no code implementations • ICML 2020 • Jayadev Acharya, Kallista Bonawitz, Peter Kairouz, Daniel Ramage, Ziteng Sun
The original definition of LDP assumes that all the elements in the data domain are equally sensitive.
no code implementations • 19 Aug 2022 • Zachary Charles, Kallista Bonawitz, Stanislav Chiknavaryan, Brendan Mcmahan, Blaise Agüera y Arcas
In order to make this practical, we outline a primitive, federated select, which enables client-specific selection in realistic FL systems.
1 code implementation • 3 Nov 2021 • Eugene Bagdasaryan, Peter Kairouz, Stefan Mellem, Adrià Gascón, Kallista Bonawitz, Deborah Estrin, Marco Gruteser
We design a scalable algorithm to privately generate location heatmaps over decentralized data from millions of user devices.
8 code implementations • 10 Dec 2019 • Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao
FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches.