1 code implementation • 11 Mar 2024 • Manxi Lin, Nina Weng, Kamil Mikolaj, Zahra Bashir, Morten Bo Søndergaard Svendsen, Martin Tolsgaard, Anders Nymark Christensen, Aasa Feragen
Shortcut learning is a phenomenon where machine learning models prioritize learning simple, potentially misleading cues from data that do not generalize well beyond the training set.
no code implementations • 24 Mar 2023 • Kamil Mikolaj, Manxi Lin, Zahra Bashir, Morten Bo Søndergaard Svendsen, Martin Tolsgaard, Anders Nymark, Aasa Feragen
In order to utilize the vast amounts of data available in these databases, we develop and validate a series of methods for minimizing the confounding effects of embedded text and calipers on deep learning algorithms designed for ultrasound, using standard plane classification as a test case.
no code implementations • 20 Sep 2022 • Carla Sendra-Balcells, Víctor M. Campello, Jordina Torrents-Barrena, Yahya Ali Ahmed, Mustafa Elattar, Benard Ohene Botwe, Pempho Nyangulu, William Stones, Mohammed Ammar, Lamya Nawal Benamer, Harriet Nalubega Kisembo, Senai Goitom Sereke, Sikolia Z. Wanyonyi, Marleen Temmerman, Eduard Gratacós, Elisenda Bonet, Elisenda Eixarch, Kamil Mikolaj, Martin Grønnebæk Tolsgaard, Karim Lekadir
This framework shows promise for building new AI models generalisable across clinical centres with limited data acquired in challenging and heterogeneous conditions and calls for further research to develop new solutions for usability of AI in countries with less resources.