no code implementations • 30 May 2023 • Huahui Yi, Ziyuan Qin, Wei Xu, Miaotian Guo, Kun Wang, Shaoting Zhang, Kang Li, Qicheng Lao
To achieve this, we propose a Concept Embedding Search (ConES) approach by optimizing prompt embeddings -- without the need of the text encoder -- to capture the 'concept' of the image modality through a variety of task objectives.
no code implementations • 25 May 2023 • Kang Li, Pengcheng Zhu, Yan Wang, Fu-Chun Zheng, Xiaohu You
With the proposed packet delivery mechanism, we jointly optimize bandwidth allocation and power control of uplink and downlink, antenna configuration, and subchannel assignment to minimize the average total power under the constraint of URLLC transmission requirements.
no code implementations • 12 May 2023 • Jie Xu, Lu Lu, Sen yang, Bilin Liang, Xinwei Peng, Jiali Pang, Jinru Ding, Xiaoming Shi, Lingrui Yang, Huan Song, Kang Li, Xin Sun, Shaoting Zhang
The responses generated by chatbots based on LLMs are recorded for blind evaluations by five licensed medical experts.
no code implementations • 28 Apr 2023 • Dongjie Cheng, Ziyuan Qin, Zekun Jiang, Shaoting Zhang, Qicheng Lao, Kang Li
As the first promptable foundation model for segmentation tasks, it was trained on a large dataset with an unprecedented number of images and annotations.
no code implementations • 13 Apr 2023 • Teng Zhang, Kang Li
Adversarial training and data augmentation with noise are widely adopted techniques to enhance the performance of neural networks.
no code implementations • 31 Mar 2023 • Zhi Yang, Kang Li, Haitao Gan, Zhongwei Huang, Ming Shi
HD-GCN utilizes hybrid diffusion by combining information diffusion between neighborhood nodes in the feature space and adjacent nodes in the adjacency matrix.
1 code implementation • 25 Mar 2023 • Xiaoxiao He, Chaowei Tan, Bo Liu, Liping Si, Weiwu Yao, Liang Zhao, Di Liu, Qilong Zhangli, Qi Chang, Kang Li, Dimitris N. Metaxas
The supervised learning of the proposed method extracts features from limited labeled data in each client, while the unsupervised data is used to distill both feature and response-based knowledge from a national data repository to further improve the accuracy of the collaborative model and reduce the communication cost.
no code implementations • 12 Mar 2023 • Huahui Yi, Ziyuan Qin, Qicheng Lao, Wei Xu, Zekun Jiang, Dequan Wang, Shaoting Zhang, Kang Li
Therefore, in this work, we further explore the possibility of leveraging pre-trained VLMs as medical foundation models for building general-purpose medical AI, where we thoroughly investigate three machine-learning paradigms, i. e., domain/task-specialized learning, joint learning, and continual learning, for training the VLMs and evaluate their generalization performance on cross-domain and cross-task test sets.
no code implementations • 7 Mar 2023 • Kang Li, Yan Song, Li-Rong Dai, Ian McLoughlin, Xin Fang, Lin Liu
In this paper, we propose an effective sound event detection (SED) method based on the audio spectrogram transformer (AST) model, pretrained on the large-scale AudioSet for audio tagging (AT) task, termed AST-SED.
1 code implementation • 22 Nov 2022 • Ran Gu, Guotai Wang, Jiangshan Lu, Jingyang Zhang, Wenhui Lei, Yinan Chen, Wenjun Liao, Shichuan Zhang, Kang Li, Dimitris N. Metaxas, Shaoting Zhang
First, a disentangle network is proposed to decompose an image into a domain-invariant anatomical representation and a domain-specific style code, where the former is sent to a segmentation model that is not affected by the domain shift, and the disentangle network is regularized by a decoder that combines the anatomical and style codes to reconstruct the input image.
no code implementations • 9 Nov 2022 • Kang Li, Lequan Yu, Pheng-Ann Heng
Particularly, we first present a style-oriented replay module to enable structure-realistic and memory-efficient reproduction of past data, and then incorporate the replayed past data to jointly optimize the model with current data to alleviate catastrophic forgetting.
1 code implementation • 30 Sep 2022 • Ziyuan Qin, Huahui Yi, Qicheng Lao, Kang Li
The large-scale pre-trained vision language models (VLM) have shown remarkable domain transfer capability on natural images.
1 code implementation • 19 Aug 2022 • Guotai Wang, Xiangde Luo, Ran Gu, Shuojue Yang, Yijie Qu, Shuwei Zhai, Qianfei Zhao, Kang Li, Shaoting Zhang
Existing toolkits mainly focus on fully supervised segmentation and require full and accurate pixel-level annotations that are time-consuming and difficult to acquire for segmentation tasks, which makes learning from imperfect labels highly desired for reducing the annotation cost.
1 code implementation • 18 Aug 2022 • Ran Gu, Jingyang Zhang, Guotai Wang, Wenhui Lei, Tao Song, Xiaofan Zhang, Kang Li, Shaoting Zhang
To solve this problem, we propose Contrastive Semi-supervised learning for Cross Anatomy Domain Adaptation (CS-CADA) that adapts a model to segment similar structures in a target domain, which requires only limited annotations in the target domain by leveraging a set of existing annotated images of similar structures in a source domain.
1 code implementation • 11 Aug 2022 • Shuwei Zhai, Guotai Wang, Xiangde Luo, Qiang Yue, Kang Li, Shaoting Zhang
The success of Convolutional Neural Networks (CNNs) in 3D medical image segmentation relies on massive fully annotated 3D volumes for training that are time-consuming and labor-intensive to acquire.
1 code implementation • 26 Jun 2022 • Shurui Gui, Hao Yuan, Jie Wang, Qicheng Lao, Kang Li, Shuiwang Ji
We investigate the explainability of graph neural networks (GNNs) as a step towards elucidating their working mechanisms.
no code implementations • 8 Jun 2022 • Longlong Jing, Ruichi Yu, Henrik Kretzschmar, Kang Li, Charles R. Qi, Hang Zhao, Alper Ayvaci, Xu Chen, Dillon Cower, Yingwei Li, Yurong You, Han Deng, CongCong Li, Dragomir Anguelov
Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving.
1 code implementation • 7 Jun 2022 • Hao Fu, Guotai Wang, Wenhui Lei, Wei Xu, Qianfei Zhao, Shichuan Zhang, Kang Li, Shaoting Zhang
Accurate segmentation of Anatomical brain Barriers to Cancer spread (ABCs) plays an important role for automatic delineation of Clinical Target Volume (CTV) of brain tumors in radiotherapy.
1 code implementation • 13 Mar 2022 • Xiaoxiao He, Chaowei Tan, Virak Tan, Kang Li
For diagnosis of shoulder illness, it is essential to look at the morphology deviation of scapula and humerus from the medical images that are acquired from Magnetic Resonance (MR) imaging.
no code implementations • 10 Mar 2022 • Junjie Shen, Ningfei Wang, Ziwen Wan, Yunpeng Luo, Takami Sato, Zhisheng Hu, Xinyang Zhang, Shengjian Guo, Zhenyu Zhong, Kang Li, Ziming Zhao, Chunming Qiao, Qi Alfred Chen
In this paper, we perform the first systematization of knowledge of such growing semantic AD AI security research space.
no code implementations • 21 Feb 2022 • Huayue Li, Zhaowei Han, Wenqiang Pu, Liangqi Liu, Kang Li, Bo Jiu
Numerical simulations demonstrates the effectiveness of deep CFR algorithm for approximately finding NE and obtaining the best response strategy.
no code implementations • 24 Nov 2021 • Yang Li, Kang Li, Zhen Yang, Yang Yu, Runnan Xu, Miaosen Yang
In order to solve this model, this research combines Jaya algorithm and interior point method (IPM) to develop a hybrid analysis-heuristic solution method called Jaya-IPM, where the lower- and upper- levels are respectively addressed by the IPM and the Jaya, and the scheduling scheme is obtained via iterations between the two levels.
2 code implementations • 3 Nov 2021 • Xiangde Luo, Wenjun Liao, Jianghong Xiao, Jieneng Chen, Tao Song, Xiaofan Zhang, Kang Li, Dimitris N. Metaxas, Guotai Wang, Shaoting Zhang
Deep learning-based medical image segmentation has shown the potential to reduce manual delineation efforts, but it still requires a large-scale fine annotated dataset for training, and there is a lack of large-scale datasets covering the whole abdomen region with accurate and detailed annotations for the whole abdominal organ segmentation.
no code implementations • ACL 2021 • Jiajia Tang, Kang Li, Xuanyu Jin, Andrzej Cichocki, Qibin Zhao, Wanzeng Kong
In this work, the coupled-translation fusion network (CTFN) is firstly proposed to model bi-direction interplay via couple learning, ensuring the robustness in respect to missing modalities.
no code implementations • 28 Jul 2021 • Yao Hu, Guohua Geng, Kang Li, Wei Zhou, Xingxing Hao, Xin Cao
Then we present a supervised segmentation and unsupervised reconstruction networks to learn the characteristics of 3D point clouds.
no code implementations • 2 Jun 2021 • Zhisheng Hu, Shengjian Guo, Zhenyu Zhong, Kang Li
Simulation-based virtual testing has become an essential step to ensure the safety of autonomous driving systems.
1 code implementation • 7 May 2021 • Xiaoshuang Shi, Zhenhua Guo, Kang Li, Yun Liang, Xiaofeng Zhu
They might significantly deteriorate the performance of convolutional neural networks (CNNs), because CNNs are easily overfitted on corrupted labels.
1 code implementation • 12 Apr 2021 • Xiangde Luo, Tao Song, Guotai Wang, Jieneng Chen, Yinan Chen, Kang Li, Dimitris N. Metaxas, Shaoting Zhang
To overcome these problems, we propose a 3D sphere representation-based center-points matching detection network that is anchor-free and automatically predicts the position, radius, and offset of nodules without the manual design of nodule/anchor parameters.
no code implementations • 10 Feb 2021 • Fengting Li, Xuankai Liu, Xiaoli Zhang, Qi Li, Kun Sun, Kang Li
Particularly, the localized adversarial examples only perturb a small and contiguous region of the target object, so that they are robust and effective in both digital and physical worlds.
1 code implementation • 9 Feb 2021 • Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, Shuiwang Ji
To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs.
1 code implementation • 7 Jan 2021 • Kang Li, Shujun Wang, Lequan Yu, Pheng-Ann Heng
In this way, the dual teacher models would transfer acquired inter- and intra-domain knowledge to the student model for further integration and exploitation.
1 code implementation • 1 Dec 2020 • Yao Hu, Guohua Geng, Kang Li, Wei Zhou
Then we present a supervised segmentation and unsupervised reconstruction networks to learn the characteristics of 3D point clouds.
no code implementations • 13 Oct 2020 • Shujun Wang, Lequan Yu, Kang Li, Xin Yang, Chi-Wing Fu, Pheng-Ann Heng
Our DoFE framework dynamically enriches the image features with additional domain prior knowledge learned from multi-source domains to make the semantic features more discriminative.
no code implementations • EMNLP 2020 • Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang Li, Jilin Chen, Alex Beutel, Ed Chi
Experiments on real-world NLP datasets demonstrate that our method can generate more diverse and fluent adversarial texts, compared to many existing adversarial text generation approaches.
no code implementations • 4 Oct 2020 • Kang Li, Lequan Yu, Shujun Wang, Pheng-Ann Heng
Considering multi-modality data with the same anatomic structures are widely available in clinic routine, in this paper, we aim to exploit the prior knowledge (e. g., shape priors) learned from one modality (aka., assistant modality) to improve the segmentation performance on another modality (aka., target modality) to make up annotation scarcity.
no code implementations • 13 Jul 2020 • Kang Li, Shujun Wang, Lequan Yu, Pheng-Ann Heng
Medical image annotations are prohibitively time-consuming and expensive to obtain.
no code implementations • 10 Jul 2020 • Hui Qu, Pengxiang Wu, Qiaoying Huang, Jingru Yi, Zhennan Yan, Kang Li, Gregory M. Riedlinger, Subhajyoti De, Shaoting Zhang, Dimitris N. Metaxas
To alleviate such tedious and manual effort, in this paper we propose a novel weakly supervised segmentation framework based on partial points annotation, i. e., only a small portion of nuclei locations in each image are labeled.
no code implementations • 2 Jul 2020 • Massoud Amini, Kang Li, Damian Sawicki, Ali Shakibazadeh
We show that the dynamic asymptotic dimension of a minimal free action of an infinite virtually cyclic group on a compact Hausdorff space is always one.
Dynamical Systems Group Theory Operator Algebras Primary: 37C45, Secondary: 37B05, 20F69
no code implementations • 13 Aug 2019 • Chaowei Tan, Zhennan Yan, Shaoting Zhang, Kang Li, Dimitris N. Metaxas
However, effective and efficient delineation of all the knee articular cartilages in large-sized and high-resolution 3D MR knee data is still an open challenge.
no code implementations • USENIX Security Symposium 2019 • Qixue Xiao, Yufei Chen, Chao Shen, Yu Chen, Kang Li
We also present an algorithm that can successfully enable attacks against famous cloud-based image services (such as those from Microsoft Azure, Aliyun, Baidu, and Tencent) and cause obvious misclassification effects, even when the details of image processing (such as the exact scaling algorithm and scale dimension parameters) are hidden in the cloud.
1 code implementation • 26 Jun 2019 • Shujun Wang, Lequan Yu, Kang Li, Xin Yang, Chi-Wing Fu, Pheng-Ann Heng
The cross-domain discrepancy (domain shift) hinders the generalization of deep neural networks to work on different domain datasets. In this work, we present an unsupervised domain adaptation framework, called Boundary and Entropy-driven Adversarial Learning (BEAL), to improve the OD and OC segmentation performance, especially on the ambiguous boundary regions.
1 code implementation • 4 Jun 2019 • Rahil Mehrizi, Xi Peng, Shaoting Zhang, Ruisong Liao, Kang Li
This study presents a starting point toward a powerful tool for automatic classification of gait disorders and can be used as a basis for future applications of Deep Learning in clinical gait analysis.
no code implementations • 3 Jun 2019 • M. Ablikim, M. N. Achasov, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, F. F. An, Q. An, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, K. Begzsuren, D. W. Bennett, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, S. A. Cetin, J. Chai, J. F. Chang, W. L. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, P. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. Cheng, X. K. Chu, G. Cibinetto, F. Cossio, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. DeMori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, Z. L. Dou, S. X. Du, P. F. Duan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Q. Gao, X. L. Gao, Y. Gao, Y. G. Gao, Z. Gao, B. Garillon, I. Garzia, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, Z. Haddadi, S. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, X. T. Huang, X. Z. Huang, Z. L. Huang, T. Hussain, W. Ikegami Andersson, M. Irshad, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. L. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. S. Kang, M. Kavatsyuk, B. C. Ke, I. K. Keshk, T. Khan, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. Kurth, W. Kühn, J. S. Lange, P. Larin, L. Lavezzi, S. Leiber, H. Leithoff, C. Li, Cheng Li, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, J. W. Li, K. J. Li, Kang Li, Ke Li, Lei LI, P. L. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, D. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. L. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Y. Liu, Ke Liu, L. D. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Zhiqing Liu, Y. F. Long, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, N. Yu. Muchnoi, H. Muramatsu, A. Mustafa, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H. P. Peng, Z. Y. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, C. F. Qiao, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, C. F. Redmer, M. Richter, M. Ripka, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, A. Sarantsev, M. Savrié, K. Schoenning, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, X. Shi, J. J. Song, W. M. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, X. H. Sun, Y. J. Sun, Y. K Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, Y. T Tan, C. J. Tang, G. Y. Tang, X. Tang, M. Tiemens, B. Tsednee, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Wang, D. Y. Wang, Dan Wang, H. H. Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, Meng Wang, P. Wang, P. L. Wang, W. P. Wang, X. F. Wang, Y. Wang, Y. F. Wang, Z. Wang, Z. G. Wang, Z. Y. Wang, Zongyuan Wang, T. Weber, D. H. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, X. Xia, Y. Xia, D. Xiao, Y. J. Xiao, Z. J. Xiao, Y. G. Xie, Y. H. Xie, X. A. Xiong, Q. L. Xiu, G. F. Xu, J. J. Xu, L. Xu, Q. J. Xu, X. P. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Z. Q. Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yang Zhang, YaoZ hang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Xiaoyu Zhou, Xu Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, B. S. Zou, J. H. Zou
We study $e^{+}e^{-}$ collisions with a $\pi^{+}\pi^{-}\pi^{0}\eta_{c}$ final state using data samples collected with the BESIII detector at center-of-mass energies $\sqrt{s}=4. 226$, $4. 258$, $4. 358$, $4. 416$, and $4. 600$ GeV.
High Energy Physics - Experiment
no code implementations • 22 Feb 2019 • Xiaoxiao He, Chaowei Tan, Yuting Qiao, Virak Tan, Dimitris Metaxas, Kang Li
For the initial shoulder preoperative diagnosis, it is essential to obtain a three-dimensional (3D) bone mask from medical images, e. g., magnetic resonance (MR).
no code implementations • 6 Feb 2018 • Rahil Mehrizi, Xi Peng, Zhiqiang Tang, Xu Xu, Dimitris Metaxas, Kang Li
The results are also compared with state-of-the-art methods on HumanEva-I dataset, which demonstrates the superior performance of our approach.
no code implementations • 21 Dec 2017 • Qixue Xiao, Kang Li, Deyue Zhang, Yier Jin
This paper presents a downscaling attack that targets the data scaling process in deep learning applications.
no code implementations • ICCV 2015 • Sheng Li, Kang Li, Yun Fu
Subspace clustering is an effective technique for segmenting data drawn from multiple subspaces.
no code implementations • 30 May 2015 • Yi-bin Huang, Kang Li, Ge Wang, Min Cao, Pin Li, Yu-jia Zhang
For the problem whether Graphic Processing Unit(GPU), the stream processor with high performance of floating-point computing is applicable to neural networks, this paper proposes the parallel recognition algorithm of Convolutional Neural Networks(CNNs). It adopts Compute Unified Device Architecture(CUDA)technology, definite the parallel data structures, and describes the mapping mechanism for computing tasks on CUDA.