no code implementations • 15 Nov 2024 • Frederik F. Flöther, Daniel Blankenberg, Maria Demidik, Karl Jansen, Raga Krishnakumar, Rajiv Krishnakumar, Nouamane Laanait, Laxmi Parida, Carl Saab, Filippo Utro
Biomarkers play a central role in medicine's gradual progress towards proactive, personalized precision diagnostics and interventions.
no code implementations • 18 Oct 2024 • Andrea Bulgarelli, Elia Cellini, Karl Jansen, Stefan Kühn, Alessandro Nada, Shinichi Nakajima, Kim A. Nicoli, Marco Panero
We introduce a novel technique to numerically calculate R\'enyi entanglement entropies in lattice quantum field theory using generative models.
1 code implementation • NeurIPS 2023 • Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Klaus-Robert Müller, Paolo Stornati, Pan Kessel, Shinichi Nakajima
In this paper, we propose a novel and powerful method to harness Bayesian optimization for Variational Quantum Eigensolvers (VQEs) -- a hybrid quantum-classical protocol used to approximate the ground state of a quantum Hamiltonian.
no code implementations • 17 Jan 2024 • Cenk Tüysüz, Su Yeon Chang, Maria Demidik, Karl Jansen, Sofia Vallecorsa, Michele Grossi
This work studies the behavior of EQNN models in the presence of noise.
no code implementations • 27 Feb 2023 • Kim A. Nicoli, Christopher J. Anders, Tobias Hartung, Karl Jansen, Pan Kessel, Shinichi Nakajima
In this work, we first point out that the tunneling problem is also present for normalizing flows but is shifted from the sampling to the training phase of the algorithm.
no code implementations • 22 Nov 2021 • Kim A. Nicoli, Christopher Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Pan Kessel, Shinichi Nakajima, Paolo Stornati
Crucially, these models allow for the direct estimation of the free energy at a given point in parameter space.
1 code implementation • 7 Aug 2020 • Karl Jansen, Eike Hermann Müller, Robert Scheichl
This paper discusses hierarchical sampling methods to tame this growth in autocorrelations.
High Energy Physics - Lattice Numerical Analysis Numerical Analysis Computational Physics 81-08, 81T25, 65Y20, 60J22 F.2; J.2
no code implementations • 14 Jul 2020 • Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Pan Kessel, Shinichi Nakajima, Paolo Stornati
In this work, we demonstrate that applying deep generative machine learning models for lattice field theory is a promising route for solving problems where Markov Chain Monte Carlo (MCMC) methods are problematic.