Search Results for author: Kashob Kumar Roy

Found 8 papers, 5 papers with code

ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation

no code implementations20 Oct 2024 Kashob Kumar Roy, Pritom Saha Akash, Kevin Chen-Chuan Chang, Lucian Popa

Open-domain long-form text generation requires generating coherent, comprehensive responses that address complex queries with both breadth and depth.

RAG Retrieval +1

Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs

1 code implementation10 Apr 2024 Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng Tang, Suhang Wang, Yu Meng, Jiawei Han

Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively.

Long-form Question Answering: An Iterative Planning-Retrieval-Generation Approach

no code implementations15 Nov 2023 Pritom Saha Akash, Kashob Kumar Roy, Lucian Popa, Kevin Chen-Chuan Chang

From an extensive experiment on both an open domain and a technical domain QA dataset, we find that our model outperforms the state-of-the-art models on various textual and factual metrics for the LFQA task.

Long Form Question Answering Retrieval

Node Embedding using Mutual Information and Self-Supervision based Bi-level Aggregation

1 code implementation27 Apr 2021 Kashob Kumar Roy, Amit Roy, A K M Mahbubur Rahman, M Ashraful Amin, Amin Ahsan Ali

Graph Neural Networks (GNNs) learn low dimensional representations of nodes by aggregating information from their neighborhood in graphs.

Node Clustering

Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph Neural Network

1 code implementation26 Apr 2021 Amit Roy, Kashob Kumar Roy, Amin Ahsan Ali, M Ashraful Amin, A K M Mahbubur Rahman

However, most state-of-the-art approaches have designed spatial-only (e. g. Graph Neural Networks) and temporal-only (e. g. Recurrent Neural Networks) modules to separately extract spatial and temporal features.

Graph Neural Network Traffic Prediction

Cannot find the paper you are looking for? You can Submit a new open access paper.