no code implementations • 8 May 2022 • Shanqing Cai, Subhashini Venugopalan, Katrin Tomanek, Ajit Narayanan, Meredith Ringel Morris, Michael P. Brenner
Motivated by the need for accelerating text entry in augmentative and alternative communication (AAC) for people with severe motor impairments, we propose a paradigm in which phrases are abbreviated aggressively as primarily word-initial letters.
no code implementations • 9 Oct 2021 • Jimmy Tobin, Katrin Tomanek
Word error rate (WER) thresholds were selected to determine Success Percentage (the percentage of personalized models reaching the target WER) in different application scenarios.
no code implementations • EMNLP 2021 • Katrin Tomanek, Vicky Zayats, Dirk Padfield, Kara Vaillancourt, Fadi Biadsy
We demonstrate this on two speech adaptation tasks (atypical and accented speech) and for two state-of-the-art ASR architectures.
no code implementations • 8 Jul 2021 • Subhashini Venugopalan, Joel Shor, Manoj Plakal, Jimmy Tobin, Katrin Tomanek, Jordan R. Green, Michael P. Brenner
Automatic classification of disordered speech can provide an objective tool for identifying the presence and severity of speech impairment.
no code implementations • 18 Jun 2021 • Katrin Tomanek, Françoise Beaufays, Julie Cattiau, Angad Chandorkar, Khe Chai Sim
While current state-of-the-art Automatic Speech Recognition (ASR) systems achieve high accuracy on typical speech, they suffer from significant performance degradation on disordered speech and other atypical speech patterns.
3 code implementations • 21 Feb 2019 • Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models.