1 code implementation • Findings (ACL) 2022 • Dawei Li, Yanran Li, Jiayi Zhang, Ke Li, Chen Wei, Jianwei Cui, Bin Wang
Existing commonsense knowledge bases often organize tuples in an isolated manner, which is deficient for commonsense conversational models to plan the next steps.
1 code implementation • 24 Aug 2023 • Jiang-Tian Zhai, Xialei Liu, Andrew D. Bagdanov, Ke Li, Ming-Ming Cheng
Moreover, MAEs can reliably reconstruct original input images from randomly selected patches, which we use to store exemplars from past tasks more efficiently for CIL.
1 code implementation • 18 Aug 2023 • Junkai Xu, Liang Peng, Haoran Cheng, Hao Li, Wei Qian, Ke Li, Wenxiao Wang, Deng Cai
To the best of our knowledge, this work is the first to introduce volume rendering for M3D, and demonstrates the potential of implicit reconstruction for image-based 3D perception.
1 code implementation • 24 Jul 2023 • Wolfgang Boettcher, Lukas Hoyer, Ozan Unal, Ke Li, Dengxin Dai
While using a single model, our method yields significantly better results than a non-adaptive baseline trained on different LiDAR patterns.
no code implementations • 21 Jul 2023 • Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Junteng Jia, Yuan Shangguan, Ke Li, Jinxi Guo, Wenhan Xiong, Jay Mahadeokar, Ozlem Kalinli, Christian Fuegen, Mike Seltzer
Furthermore, we perform ablation studies to investigate whether the LLM can be completely frozen during training to maintain its original capabilities, scaling up the audio encoder, and increasing the audio encoder striding to generate fewer embeddings.
Abstractive Text Summarization
Automatic Speech Recognition
+3
no code implementations • 20 Jul 2023 • Yanshu Zhang, Shichong Peng, Alireza Moazeni, Ke Li
PAPR effectively learns point cloud positions to represent the correct scene geometry, even when the initialization drastically differs from the target geometry.
no code implementations • 3 Jul 2023 • Shengbo Wang, Ke Li, Yin Yang, Yuting Cao, TingWen Huang, Shiping Wen
Specifically, with the help of CBF method, we learn the inherent and external uncertainties by a unified adaptive Bayesian linear regression (ABLR) model, which consists of a forward neural network (NN) and a Bayesian output layer.
1 code implementation • 29 Jun 2023 • Hongjie Cai, Nan Song, Zengzhi Wang, Qiming Xie, Qiankun Zhao, Ke Li, Siwei Wu, Shijie Liu, Jianfei Yu, Rui Xia
Aspect-based sentiment analysis is a long-standing research interest in the field of opinion mining, and in recent years, researchers have gradually shifted their focus from simple ABSA subtasks to end-to-end multi-element ABSA tasks.
1 code implementation • 23 Jun 2023 • Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, Enhong Chen
Multimodal Large Language Model (MLLM) recently has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks.
1 code implementation • 23 Jun 2023 • Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, Rongrong Ji
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks, showing amazing emergent abilities in recent studies, such as writing poems based on an image.
no code implementations • 22 Jun 2023 • Bohan Zhou, Ke Li, Jiechuan Jiang, Zongqing Lu
Learning from visual observation (LfVO), aiming at recovering policies from only visual observation data, is promising yet a challenging problem.
1 code implementation • 30 May 2023 • Yifan Xu, Mengdan Zhang, Chaoyou Fu, Peixian Chen, Xiaoshan Yang, Ke Li, Changsheng Xu
To address the learning inertia problem brought by the frozen detector, a vision conditioned masked language prediction strategy is proposed.
no code implementations • 24 May 2023 • Sid Wang, John Nguyen, Ke Li, Carole-Jean Wu
However, fine-tuning all pre-trained model parameters becomes impractical as the model size and number of tasks increase.
no code implementations • 17 May 2023 • Kuiliang Gao, Anzhu Yu, Xiong You, Wenyue Guo, Ke Li, Ningbo Huang
Firstly, a multi-branch segmentation network is built to learn an expert for each source RSI.
no code implementations • 10 May 2023 • Yong Qing, Peng-Fei Zhou, Ke Li, Shi-Ju Ran
Neural network (NN) designed for challenging machine learning tasks is in general a highly nonlinear mapping that contains massive variational parameters.
no code implementations • 6 May 2023 • Heng Yang, Ke Li
Existing methods attempt to reconstruct the adversarial examples.
no code implementations • 3 May 2023 • Kiyohiro Nakayama, Mikaela Angelina Uy, Jiahui Huang, Shi-Min Hu, Ke Li, Leonidas J Guibas
We propose a factorization that models independent part style and part configuration distributions and presents a novel cross-diffusion network that enables us to generate coherent and plausible shapes under our proposed factorization.
no code implementations • CVPR 2023 • Zhiyu Qu, Yulia Gryaditskaya, Ke Li, Kaiyue Pang, Tao Xiang, Yi-Zhe Song
Following this, we design a simple explainability-friendly sketch encoder that accommodates the intrinsic properties of strokes: shape, location, and order.
Explainable artificial intelligence
Explainable Artificial Intelligence (XAI)
+1
no code implementations • 12 Apr 2023 • Alexia Jolicoeur-Martineau, Kilian Fatras, Ke Li, Tal Kachman
Diffusion Models (DMs) are powerful generative models that add Gaussian noise to the data and learn to remove it.
no code implementations • 10 Apr 2023 • Yu Wang, Shuhui Bu, Lin Chen, Yifei Dong, Kun Li, Xuefeng Cao, Ke Li
First, the point cloud is divided into small patches, and a matching patch set is selected based on global descriptors and spatial distribution, which constitutes the coarse matching process.
1 code implementation • 6 Apr 2023 • Xin Zhang, Chen Liu, Degang Yang, Tingting Song, Yichen Ye, Ke Li, Yingze Song
In this paper, we propose a new perspective on the effectiveness of spatial attention, which is that the spatial attention mechanism essentially solves the problem of convolutional kernel parameter sharing.
no code implementations • 30 Mar 2023 • Yuting Gao, Jinfeng Liu, Zihan Xu, Tong Wu, Wei Liu, Jie Yang, Ke Li, Xing Sun
During the preceding biennium, vision-language pre-training has achieved noteworthy success on several downstream tasks.
no code implementations • CVPR 2023 • Mikaela Angelina Uy, Ricardo Martin-Brualla, Leonidas Guibas, Ke Li
To address this issue, we introduce SCADE, a novel technique that improves NeRF reconstruction quality on sparse, unconstrained input views for in-the-wild indoor scenes.
no code implementations • 19 Mar 2023 • Ziluo Ding, Hao Luo, Ke Li, Junpeng Yue, Tiejun Huang, Zongqing Lu
One of the essential missions in the AI research community is to build an autonomous embodied agent that can attain high-level performance across a wide spectrum of tasks.
1 code implementation • 14 Feb 2023 • Meifang Zeng, Ke Li, Bingchuan Jiang, Liujuan Cao, Hui Li
With the idea of Cross-system Attack, we design a Practical Cross-system Shilling Attack (PC-Attack) framework that requires little information about the victim RS model and the target RS data for conducting attacks.
1 code implementation • 28 Jan 2023 • Ryoji Tanabe, Ke Li
Some quality indicators have been proposed for benchmarking preference-based evolutionary multi-objective optimization algorithms using a reference point.
no code implementations • CVPR 2023 • Phoenix Neale Williams, Ke Li
However, existing methods often struggle to simultaneously minimize the number of modified pixels and the size of the modifications, often requiring a large number of queries and assuming unrestricted access to the targeted DNN.
1 code implementation • CVPR 2023 • Ke Li, Kaiyue Pang, Yi-Zhe Song
This lack of sketch data has imposed on the community a few "peculiar" design choices -- the most representative of them all is perhaps the coerced utilisation of photo-based pre-training (i. e., no sketch), for many core tasks that otherwise dictates specific sketch understanding.
1 code implementation • 26 Dec 2022 • Xingxing Xie, Gong Cheng, Qingyang Li, Shicheng Miao, Ke Li, Junwei Han
Current mainstream object detection methods for large aerial images usually divide large images into patches and then exhaustively detect the objects of interest on all patches, no matter whether there exist objects or not.
1 code implementation • CVPR 2023 • Yuqi Lin, Minghao Chen, Wenxiao Wang, Boxi Wu, Ke Li, Binbin Lin, Haifeng Liu, Xiaofei He
To efficiently generate high-quality segmentation masks from CLIP, we propose a novel WSSS framework called CLIP-ES.
Weakly supervised Semantic Segmentation
Weakly-Supervised Semantic Segmentation
no code implementations • 16 Dec 2022 • Xialei Liu, Jiang-Tian Zhai, Andrew D. Bagdanov, Ke Li, Ming-Ming Cheng
Data-Free Class Incremental Learning (DFCIL) aims to sequentially learn tasks with access only to data from the current one.
no code implementations • 15 Dec 2022 • Ke Li, Jay Mahadeokar, Jinxi Guo, Yangyang Shi, Gil Keren, Ozlem Kalinli, Michael L. Seltzer, Duc Le
Experiments on Librispeech and in-house data show relative WER reductions (WERRs) from 3% to 5% with a slight increase in model size and negligible extra token emission latency compared with fast-slow encoder based transducer.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
1 code implementation • 25 Nov 2022 • Shichong Peng, Alireza Moazeni, Ke Li
A persistent challenge in conditional image synthesis has been to generate diverse output images from the same input image despite only one output image being observed per input image.
1 code implementation • 24 Nov 2022 • Ke Li, Tim Rolff, Susanne Schmidt, Reinhard Bacher, Simone Frintrop, Wim Leemans, Frank Steinicke
In this paper, we present and evaluate a NeRF-based framework that is capable of rendering scenes in immersive VR allowing users to freely move their heads to explore complex real-world scenes.
no code implementations • 5 Nov 2022 • Ke Li, Renzhi Chen, Xin Yao
Many real-world problems are usually computationally costly and the objective functions evolve over time.
no code implementations • 31 Oct 2022 • Suyoun Kim, Ke Li, Lucas Kabela, Rongqing Huang, Jiedan Zhu, Ozlem Kalinli, Duc Le
In this work, we present our Joint Audio/Text training method for Transformer Rescorer, to leverage unpaired text-only data which is relatively cheaper than paired audio-text data.
1 code implementation • 30 Oct 2022 • Kiarash Zahirnia, Oliver Schulte, Parmis Naddaf, Ke Li
We utilize the micro-macro objective to improve graph generation with a GraphVAE, a well-established model based on graph-level latent variables, that provides fast training and generation time for medium-sized graphs.
1 code implementation • 6 Oct 2022 • Heng Yang, Ke Li
Our study shows that even employing pre-trained language models, existing text augmentation methods generate numerous low-quality instances and lead to the feature space shift problem in augmentation instances.
1 code implementation • 1 Oct 2022 • Xialei Liu, Yu-Song Hu, Xu-Sheng Cao, Andrew D. Bagdanov, Ke Li, Ming-Ming Cheng
However, conventional CIL methods consider a balanced distribution for each new task, which ignores the prevalence of long-tailed distributions in the real world.
no code implementations • 9 Sep 2022 • Ke Li, Cameron Baird, Dan Lin
With the advances in deep learning, speaker verification has achieved very high accuracy and is gaining popularity as a type of biometric authentication option in many scenes of our daily life, especially the growing market of web services.
1 code implementation • 27 Aug 2022 • Hong Yang, Gongrui Nan, Mingbao Lin, Fei Chao, Yunhang Shen, Ke Li, Rongrong Ji
Finally, the LSA modules are further developed to fully use the prior information in non-shadow regions to cleanse the shadow regions.
2 code implementations • 2 Aug 2022 • Heng Yang, Chen Zhang, Ke Li
The advancement of aspect-based sentiment analysis (ABSA) has urged the lack of a user-friendly framework that can largely lower the difficulty of reproducing state-of-the-art ABSA performance, especially for beginners.
2 code implementations • 22 Jun 2022 • Peixian Chen, Kekai Sheng, Mengdan Zhang, Mingbao Lin, Yunhang Shen, Shaohui Lin, Bo Ren, Ke Li
Open-vocabulary object detection (OVD) aims to scale up vocabulary size to detect objects of novel categories beyond the training vocabulary.
Ranked #6 on
Open Vocabulary Object Detection
on LVIS v1.0
1 code implementation • 14 Jun 2022 • Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, Rongrong Ji
In this paper, we show that the N:M learning can be naturally characterized as a combinatorial problem which searches for the best combination candidate within a finite collection.
2 code implementations • 14 Jun 2022 • Peixian Chen, Mengdan Zhang, Yunhang Shen, Kekai Sheng, Yuting Gao, Xing Sun, Ke Li, Chunhua Shen
A natural usage of ViTs in detection is to replace the CNN-based backbone with a transformer-based backbone, which is straightforward and effective, with the price of bringing considerable computation burden for inference.
1 code implementation • 12 Jun 2022 • Ke Li, Heng Yang, Willem Visser
In this paper, we propose DaNuoYi, an automatic injection testing tool that simultaneously generates test inputs for multiple types of injection attacks on a WAF.
1 code implementation • 2 Jun 2022 • Nan Wang, Shaohui Lin, Xiaoxiao Li, Ke Li, Yunhang Shen, Yue Gao, Lizhuang Ma
U-Nets have achieved tremendous success in medical image segmentation.
no code implementations • 28 May 2022 • Shuang Li, Ke Li, Wei Li
Constraint violation has been a building block to design evolutionary multi-objective optimization algorithms for solving constrained multi-objective optimization problems.
no code implementations • 28 May 2022 • Renzhi Chen, Ke Li
Data-driven evolutionary multi-objective optimization (EMO) has been recognized as an effective approach for multi-objective optimization problems with expensive objective functions.
no code implementations • 29 Apr 2022 • Yuting Gao, Jinfeng Liu, Zihan Xu, Jun Zhang, Ke Li, Rongrong Ji, Chunhua Shen
Large-scale vision-language pre-training has achieved promising results on downstream tasks.
no code implementations • 6 Apr 2022 • Ke Li, Guiyu Lai, Xin Yao
Bearing this in mind, this paper develops a framework for designing preference-based EMO algorithms to find SOI in an interactive manner.
1 code implementation • 6 Apr 2022 • Dawei Li, Yanran Li, Jiayi Zhang, Ke Li, Chen Wei, Jianwei Cui, Bin Wang
Existing commonsense knowledge bases often organize tuples in an isolated manner, which is deficient for commonsense conversational models to plan the next steps.
no code implementations • 29 Mar 2022 • Jay Mahadeokar, Yangyang Shi, Ke Li, Duc Le, Jiedan Zhu, Vikas Chandra, Ozlem Kalinli, Michael L Seltzer
Streaming ASR with strict latency constraints is required in many speech recognition applications.
1 code implementation • CVPR 2022 • Qinqin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing Sun, Yonghong Tian, Jie Chen, Rongrong Ji
Recently, Vision Transformer (ViT) has achieved remarkable success in several computer vision tasks.
1 code implementation • 21 Mar 2022 • Bohong Chen, Mingbao Lin, Kekai Sheng, Mengdan Zhang, Peixian Chen, Ke Li, Liujuan Cao, Rongrong Ji
To that effect, we construct an Edge-to-PSNR lookup table that maps the edge score of an image patch to the PSNR performance for each subnet, together with a set of computation costs for the subnets.
1 code implementation • 8 Mar 2022 • Mengzhao Chen, Mingbao Lin, Ke Li, Yunhang Shen, Yongjian Wu, Fei Chao, Rongrong Ji
Our proposed CF-ViT is motivated by two important observations in modern ViT models: (1) The coarse-grained patch splitting can locate informative regions of an input image.
1 code implementation • 8 Mar 2022 • Yunshan Zhong, Mingbao Lin, Xunchao Li, Ke Li, Yunhang Shen, Fei Chao, Yongjian Wu, Rongrong Ji
However, these methods suffer from severe performance degradation when quantizing the SR models to ultra-low precision (e. g., 2-bit and 3-bit) with the low-cost layer-wise quantizer.
no code implementations • 7 Mar 2022 • Jiangjiao Xu, Ke Li
One of the critical challenges of time series renewable energy forecasting is the lack of historical data to train an adequate predictive model.
no code implementations • 7 Mar 2022 • Phoenix Williams, Ke Li
To evaluate the effectiveness of our proposed method, we attack three state-of-the-art image classification models trained on the CIFAR-10 dataset in a targeted manner.
1 code implementation • NeurIPS 2021 • Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani
In this work, we provide a probabilistic interpretation of model inversion attacks, and formulate a variational objective that accounts for both diversity and accuracy.
1 code implementation • 11 Jan 2022 • Niclas Vödisch, Ozan Unal, Ke Li, Luc van Gool, Dengxin Dai
In this work, we take a new route to learn to optimize the LiDAR beam configuration for a given application.
no code implementations • 5 Jan 2022 • Ke Li, Peili Mao, Tao Chen
Due to the black-box nature, it is difficult, if not impossible, to analyze and understand its behavior, such as the interaction between combinations of configuration options with regard to the performance, in particular, which is of great importance to advance the controllability of the underlying software system.
1 code implementation • 1 Nov 2021 • Fanxu Meng, Hao Cheng, Jiaxin Zhuang, Ke Li, Xing Sun
In this paper, we aim to remedy this problem and propose to remove the residual connection in a vanilla ResNet equivalently by a reserving and merging (RM) operation on ResBlock.
1 code implementation • 16 Oct 2021 • Heng Yang, Ke Li
Aspect-based sentiment classification (ABSC) has revealed the potential dependency of sentiment polarities among different aspects.
Aspect-Based Sentiment Analysis (ABSA)
Sentiment Classification
+1
no code implementations • 7 Oct 2021 • Yangyang Shi, Chunyang Wu, Dilin Wang, Alex Xiao, Jay Mahadeokar, Xiaohui Zhang, Chunxi Liu, Ke Li, Yuan Shangguan, Varun Nagaraja, Ozlem Kalinli, Mike Seltzer
This paper improves the streaming transformer transducer for speech recognition by using non-causal convolution.
1 code implementation • 5 Oct 2021 • Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han
Nowadays, oriented detectors mostly use horizontal boxes as intermedium to derive oriented boxes from them.
no code implementations • 29 Sep 2021 • Shichong Peng, Seyed Alireza Moazenipourasil, Ke Li
We consider problems where multiple predictions can be considered correct, but only one of them is given as supervision.
no code implementations • 29 Sep 2021 • Haiyan Wu, Yuting Gao, Ke Li, Yinqi Zhang, Shaohui Lin, Yuan Xie, Xing Sun
These findings motivate us to introduce an self-supervised teaching assistant (SSTA) besides the commonly used supervised teacher to improve the performance of transformers.
no code implementations • 29 Sep 2021 • Canyu Le, Zhiyuan Tang, Ke Li, Jiandong Yang
On top of this dataset, we propose a two-stage framework to perform chapter localization and chapter title generation.
no code implementations • 28 Sep 2021 • Zhe Liu, Ke Li, Shreyan Bakshi, Fuchun Peng
Speech model adaptation is crucial to handle the discrepancy between server-side proxy training data and actual data received on local devices of users.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+3
no code implementations • NeurIPS Workshop DLDE 2021 • Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, Ioannis Mitliagkas
Score-based (denoising diffusion) generative models have recently gained a lot of success in generating realistic and diverse data.
no code implementations • 23 Sep 2021 • Ke Li, Yun Yang, Naveen N. Narisetty
This new lower bound unifies existing regret bound results that have different dependencies on T due to the use of different values of margin parameter $\alpha$ explicitly implied by their assumptions.
no code implementations • 12 Sep 2021 • Ke Li, Renzhi Chen
Data-driven evolutionary optimization can be used to search for a set of non-dominated trade-off solutions, where the expensive objective functions are approximated as a surrogate model.
1 code implementation • 9 Sep 2021 • Yunshan Zhong, Mingbao Lin, Mengzhao Chen, Ke Li, Yunhang Shen, Fei Chao, Yongjian Wu, Rongrong Ji
While post-training quantization receives popularity mostly due to its evasion in accessing the original complete training dataset, its poor performance also stems from scarce images.
no code implementations • 21 Aug 2021 • Ke Li
Decomposition has been the mainstream approach in the classic mathematical programming for multi-objective optimization and multi-criterion decision-making.
1 code implementation • ICCV 2021 • Binghui Chen, Zhaoyi Yan, Ke Li, Pengyu Li, Biao Wang, WangMeng Zuo, Lei Zhang
In crowd counting, due to the problem of laborious labelling, it is perceived intractability of collecting a new large-scale dataset which has plentiful images with large diversity in density, scene, etc.
no code implementations • 18 Aug 2021 • Siyuan Ren, Bin Guo, Longbing Cao, Ke Li, Jiaqi Liu, Zhiwen Yu
To address these issues, we propose DeepExpress - a deep-learning based express delivery sequence prediction model, which extends the classic seq2seq framework to learning complex coupling between sequence and features.
1 code implementation • 3 Aug 2021 • Yifan Xu, Zhijie Zhang, Mengdan Zhang, Kekai Sheng, Ke Li, WeiMing Dong, Liqing Zhang, Changsheng Xu, Xing Sun
Vision transformers (ViTs) have recently received explosive popularity, but the huge computational cost is still a severe issue.
Ranked #473 on
Image Classification
on ImageNet
no code implementations • 30 Jun 2021 • Himanshu Arora, Saurabh Mishra, Shichong Peng, Ke Li, Ali Mahdavi-Amiri
Shape completion is the problem of completing partial input shapes such as partial scans.
no code implementations • 29 Jun 2021 • Kiarash Zahirnia, Ankita Sakhuja, Oliver Schulte, Parmis Nadaf, Ke Li, Xia Hu
Our experiments demonstrate a significant improvement in the realism of the generated graph structures, typically by 1-2 orders of magnitude of graph structure metrics, compared to leading graph VAEand GAN models.
no code implementations • 16 Jun 2021 • Shichong Peng, Alireza Moazeni, Ke Li
Deep generative models such as GANs have driven impressive advances in conditional image synthesis in recent years.
no code implementations • 7 Jun 2021 • Daniel Rebain, Ke Li, Vincent Sitzmann, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi
Implicit representations of geometry, such as occupancy fields or signed distance fields (SDF), have recently re-gained popularity in encoding 3D solid shape in a functional form.
1 code implementation • 28 May 2021 • Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, Ioannis Mitliagkas
For high-resolution images, our method leads to significantly higher quality samples than all other methods tested.
Ranked #8 on
Image Generation
on CIFAR-10
(Inception score metric)
no code implementations • 19 May 2021 • Sascha Hornauer, Ke Li, Stella X. Yu, Shabnam Ghaffarzadegan, Liu Ren
Recent progress in network-based audio event classification has shown the benefit of pre-training models on visual data such as ImageNet.
no code implementations • 11 May 2021 • Yanran Li, Ke Li, Hongke Ning, Xiaoqiang Xia, Yalong Guo, Chen Wei, Jianwei Cui, Bin Wang
Existing emotion-aware conversational models usually focus on controlling the response contents to align with a specific emotion class, whereas empathy is the ability to understand and concern the feelings and experience of others.
1 code implementation • 3 May 2021 • Jie Hu, Liujuan Cao, Yao Lu, Shengchuan Zhang, Yan Wang, Ke Li, Feiyue Huang, Ling Shao, Rongrong Ji
However, such an upgrade is not applicable to instance segmentation, due to its significantly higher output dimensions compared to object detection.
Ranked #20 on
Instance Segmentation
on COCO test-dev
2 code implementations • 19 Apr 2021 • Yuting Gao, Jia-Xin Zhuang, Shaohui Lin, Hao Cheng, Xing Sun, Ke Li, Chunhua Shen
Specifically, we find the final embedding obtained by the mainstream SSL methods contains the most fruitful information, and propose to distill the final embedding to maximally transmit a teacher's knowledge to a lightweight model by constraining the last embedding of the student to be consistent with that of the teacher.
2 code implementations • CVPR 2021 • Ke Li, Shijie Wang, Xiang Zhang, Yifan Xu, Weijian Xu, Zhuowen Tu
Here we utilize the encoder-decoder structure in Transformers to perform regression-based person and keypoint detection that is general-purpose and requires less heuristic design compared with the existing approaches.
2 code implementations • 3 Apr 2021 • Junbo Zhang, Zhiwen Zhang, Yongqing Wang, Zhiyong Yan, Qiong Song, YuKai Huang, Ke Li, Daniel Povey, Yujun Wang
This paper introduces a new open-source speech corpus named "speechocean762" designed for pronunciation assessment use, consisting of 5000 English utterances from 250 non-native speakers, where half of the speakers are children.
Ranked #6 on
Phone-level pronunciation scoring
on speechocean762
no code implementations • 25 Mar 2021 • Kekai Sheng, Ke Li, Xiawu Zheng, Jian Liang, WeiMing Dong, Feiyue Huang, Rongrong Ji, Xing Sun
However, considering that the configuration of attention, i. e., the type and the position of attention module, affects the performance significantly, it is more generalized to optimize the attention configuration automatically to be specialized for arbitrary UDA scenario.
Ranked #1 on
Unsupervised Domain Adaptation
on Duke to Market
no code implementations • 10 Mar 2021 • Jiangjiao Xu, Ke Li, Mohammad Abusara
The proposed model consists of three layers, smart grid layer, independent system operator (ISO) layer and power grid layer.
no code implementations • 10 Mar 2021 • Xinyu Shan, Ke Li
Constrained multi-objective optimization problems (CMOPs) are ubiquitous in real-world engineering optimization scenarios.
1 code implementation • 8 Mar 2021 • Ke Li, Daniel Povey, Sanjeev Khudanpur
This paper proposes a parallel computation strategy and a posterior-based lattice expansion algorithm for efficient lattice rescoring with neural language models (LMs) for automatic speech recognition.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
1 code implementation • 25 Feb 2021 • Jing Dong, Ke Li, Shuai Li, Baoxiang Wang
Strategic behavior against sequential learning methods, such as "click framing" in real recommendation systems, have been widely observed.
no code implementations • 23 Feb 2021 • BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G. Y. Hou, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, H. F. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, A. Q. Zhang, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou
Constraining our measurement to the Standard Model expectation of lepton universality ($R=9. 75$), we find the more precise results $\cal B(D_s^+\to \tau^+\nu_\tau) = (5. 22\pm0. 10\pm 0. 14)\times10^{-2}$ and $A_{\it CP}(\tau^\pm\nu_\tau) = (-0. 1\pm1. 9\pm1. 0)\%$.
High Energy Physics - Experiment
no code implementations • 8 Feb 2021 • M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N. Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S. F. Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou
Based on $14. 7~\textrm{fb}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at 17 different center-of-mass energies between $3. 7730~\textrm{GeV}$ and $4. 5995~\textrm{GeV}$, Born cross sections of the two processes $e^+e^- \to p\bar{p}\eta$ and $e^+e^- \to p\bar{p}\omega$ are measured for the first time.
High Energy Physics - Experiment
2 code implementations • 19 Jan 2021 • Ke Li, Dengxin Dai, Ender Konukoglu, Luc van Gool
With these contributions, our method is able to learn from heterogeneous datasets and lift the requirement for having a large amount of HD HSI training samples.
no code implementations • 19 Jan 2021 • Huixiang Luo, Hao Cheng, Fanxu Meng, Yuting Gao, Ke Li, Mengdan Zhang, Xing Sun
Pseudo-labeling (PL) and Data Augmentation-based Consistency Training (DACT) are two approaches widely used in Semi-Supervised Learning (SSL) methods.
no code implementations • 29 Dec 2020 • BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, N Hüsken, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou
During the 2016-17 and 2018-19 running periods, the BESIII experiment collected 7. 5~fb$^{-1}$ of $e^+e^-$ collision data at center-of-mass energies ranging from 4. 13 to 4. 44 GeV.
High Energy Physics - Experiment
1 code implementation • 10 Dec 2020 • Enwei Zhang, Xinyang Jiang, Hao Cheng, AnCong Wu, Fufu Yu, Ke Li, Xiaowei Guo, Feng Zheng, Wei-Shi Zheng, Xing Sun
Current training objectives of existing person Re-IDentification (ReID) models only ensure that the loss of the model decreases on selected training batch, with no regards to the performance on samples outside the batch.
no code implementations • 4 Dec 2020 • BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, T. T. Han, T. Z. Han, X. Q. Hao, F. A. Harris, N. Hüsken, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, V. Thoren, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang,