no code implementations • 27 Feb 2024 • Alison Callahan, Duncan McElfresh, Juan M. Banda, Gabrielle Bunney, Danton Char, Jonathan Chen, Conor K. Corbin, Debadutta Dash, Norman L. Downing, Sneha S. Jain, Nikesh Kotecha, Jonathan Masterson, Michelle M. Mello, Keith Morse, Srikar Nallan, Abby Pandya, Anurang Revri, Aditya Sharma, Christopher Sharp, Rahul Thapa, Michael Wornow, Alaa Youssef, Michael A. Pfeffer, Nigam H. Shah
Our novel contributions - usefulness estimates by simulation, financial projections to quantify sustainability, and a process to do ethical assessments - as well as their underlying methods and open source tools, are available for other healthcare systems to conduct actionable evaluations of candidate AI solutions.
no code implementations • 20 Nov 2023 • Lin Lawrence Guo, Jason Fries, Ethan Steinberg, Scott Lanyon Fleming, Keith Morse, Catherine Aftandilian, Jose Posada, Nigam Shah, Lillian Sung
With continued pretraining on local data, label efficiency substantially improved, such that $FM_{SM}$ required fewer than 1% of training examples to match the fully trained GBM's performance.