no code implementations • IWSLT (ACL) 2022 • Antonios Anastasopoulos, Loïc Barrault, Luisa Bentivogli, Marcely Zanon Boito, Ondřej Bojar, Roldano Cattoni, Anna Currey, Georgiana Dinu, Kevin Duh, Maha Elbayad, Clara Emmanuel, Yannick Estève, Marcello Federico, Christian Federmann, Souhir Gahbiche, Hongyu Gong, Roman Grundkiewicz, Barry Haddow, Benjamin Hsu, Dávid Javorský, Vĕra Kloudová, Surafel Lakew, Xutai Ma, Prashant Mathur, Paul McNamee, Kenton Murray, Maria Nǎdejde, Satoshi Nakamura, Matteo Negri, Jan Niehues, Xing Niu, John Ortega, Juan Pino, Elizabeth Salesky, Jiatong Shi, Matthias Sperber, Sebastian Stüker, Katsuhito Sudoh, Marco Turchi, Yogesh Virkar, Alexander Waibel, Changhan Wang, Shinji Watanabe
The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation.
1 code implementation • EMNLP (NLP-COVID19) 2020 • Adam Poliak, Max Fleming, Cash Costello, Kenton Murray, Mahsa Yarmohammadi, Shivani Pandya, Darius Irani, Milind Agarwal, Udit Sharma, Shuo Sun, Nicola Ivanov, Lingxi Shang, Kaushik Srinivasan, Seolhwa Lee, Xu Han, Smisha Agarwal, João Sedoc
We release a dataset of over 2, 100 COVID19 related Frequently asked Question-Answer pairs scraped from over 40 trusted websites.
1 code implementation • 29 Apr 2022 • Haoran Xu, Kenton Murray
The current state-of-the-art for few-shot cross-lingual transfer learning first trains on abundant labeled data in the source language and then fine-tunes with a few examples on the target language, termed target-adapting.
no code implementations • 20 Jan 2022 • Suraj Nair, Eugene Yang, Dawn Lawrie, Kevin Duh, Paul McNamee, Kenton Murray, James Mayfield, Douglas W. Oard
These models have improved the effectiveness of retrieval systems well beyond that of lexical term matching models such as BM25.
1 code implementation • 6 Dec 2021 • Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Srivastava, Samson Tan, Tongshuang Wu, Jascha Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, Ondrej Dusek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicolas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos P. H. S., Ananya B. Sai, Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen, Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, KV Aditya Srivatsa, Tony Sun, Mukund Varma T, A Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Gloria Wang, Zijie J. Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyi Wu, Witold Wydmański, Tianbao Xie, Usama Yaseen, M. Yee, Jing Zhang, Yue Zhang
Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on.
2 code implementations • EMNLP 2021 • Mahsa Yarmohammadi, Shijie Wu, Marc Marone, Haoran Xu, Seth Ebner, Guanghui Qin, Yunmo Chen, Jialiang Guo, Craig Harman, Kenton Murray, Aaron Steven White, Mark Dredze, Benjamin Van Durme
Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English.
2 code implementations • EMNLP 2021 • Haoran Xu, Benjamin Van Durme, Kenton Murray
The success of bidirectional encoders using masked language models, such as BERT, on numerous natural language processing tasks has prompted researchers to attempt to incorporate these pre-trained models into neural machine translation (NMT) systems.
Ranked #1 on
Machine Translation
on IWSLT2014 German-English
no code implementations • ACL (IWSLT) 2021 • Toan Q. Nguyen, Kenton Murray, David Chiang
In this paper, we investigate the driving factors behind concatenation, a simple but effective data augmentation method for low-resource neural machine translation.
Data Augmentation
Low-Resource Neural Machine Translation
+1
1 code implementation • 12 Apr 2021 • Elias Stengel-Eskin, Kenton Murray, Sheng Zhang, Aaron Steven White, Benjamin Van Durme
While numerous attempts have been made to jointly parse syntax and semantics, high performance in one domain typically comes at the price of performance in the other.
1 code implementation • EACL (AdaptNLP) 2021 • Haoran Xu, Seth Ebner, Mahsa Yarmohammadi, Aaron Steven White, Benjamin Van Durme, Kenton Murray
Fine-tuning is known to improve NLP models by adapting an initial model trained on more plentiful but less domain-salient examples to data in a target domain.
no code implementations • WS 2020 • Huda Khayrallah, Jacob Bremerman, Arya D. McCarthy, Kenton Murray, Winston Wu, Matt Post
This paper presents the Johns Hopkins University submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase for Language Education (STAPLE).
no code implementations • WS 2019 • Kenton Murray, Brian DuSell, David Chiang
We investigated the impact of auto-sizing (Murray and Chiang, 2015; Murray et al., 2019) to the Transformer network (Vaswani et al., 2017) with the goal of substantially reducing the number of parameters in the model.
1 code implementation • WS 2019 • Kenton Murray, Jeffery Kinnison, Toan Q. Nguyen, Walter Scheirer, David Chiang
Neural sequence-to-sequence models, particularly the Transformer, are the state of the art in machine translation.
1 code implementation • 2 Nov 2018 • Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup, Marianna J. Martindale, Paul McNamee, Kevin Duh, Marine Carpuat
Machine translation systems based on deep neural networks are expensive to train.
no code implementations • WS 2018 • Kenton Murray, David Chiang
We study two problems in neural machine translation (NMT).
no code implementations • 13 Feb 2016 • Abhinav Maurya, Kenton Murray, Yandong Liu, Chris Dyer, William W. Cohen, Daniel B. Neill
Many methods have been proposed for detecting emerging events in text streams using topic modeling.
no code implementations • EMNLP 2015 • Kenton Murray, David Chiang
Neural networks have been shown to improve performance across a range of natural-language tasks.