Search Results for author: Kenton Murray

Found 38 papers, 18 papers with code

Findings of the IWSLT 2022 Evaluation Campaign

no code implementations IWSLT (ACL) 2022 Antonios Anastasopoulos, Loïc Barrault, Luisa Bentivogli, Marcely Zanon Boito, Ondřej Bojar, Roldano Cattoni, Anna Currey, Georgiana Dinu, Kevin Duh, Maha Elbayad, Clara Emmanuel, Yannick Estève, Marcello Federico, Christian Federmann, Souhir Gahbiche, Hongyu Gong, Roman Grundkiewicz, Barry Haddow, Benjamin Hsu, Dávid Javorský, Vĕra Kloudová, Surafel Lakew, Xutai Ma, Prashant Mathur, Paul McNamee, Kenton Murray, Maria Nǎdejde, Satoshi Nakamura, Matteo Negri, Jan Niehues, Xing Niu, John Ortega, Juan Pino, Elizabeth Salesky, Jiatong Shi, Matthias Sperber, Sebastian Stüker, Katsuhito Sudoh, Marco Turchi, Yogesh Virkar, Alexander Waibel, Changhan Wang, Shinji Watanabe

The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation.

Speech-to-Speech Translation Translation

Strategies for Adapting Multilingual Pre-training for Domain-Specific Machine Translation

no code implementations AMTA 2022 Neha Verma, Kenton Murray, Kevin Duh

Therefore, in this work, we propose two major fine-tuning strategies: our language-first approach first learns the translation language pair via general bitext, followed by the domain via in-domain bitext, and our domain-first approach first learns the domain via multilingual in-domain bitext, followed by the language pair via language pair-specific in-domain bitext.

Domain Adaptation Machine Translation +1

Upsample or Upweight? Balanced Training on Heavily Imbalanced Datasets

no code implementations6 Oct 2024 Tianjian Li, Haoran Xu, Weiting Tan, Kenton Murray, Daniel Khashabi

Data availability across domains often follows a long-tail distribution: a few domains have abundant data, while most face dat .

Computational Efficiency

X-ALMA: Plug & Play Modules and Adaptive Rejection for Quality Translation at Scale

1 code implementation4 Oct 2024 Haoran Xu, Kenton Murray, Philipp Koehn, Hieu Hoang, Akiko Eriguchi, Huda Khayrallah

In this paper, we prioritize quality over scaling number of languages, with a focus on multilingual machine translation task, and introduce X-ALMA, a model designed with a commitment to ensuring top-tier performance across 50 diverse languages, regardless of their resource levels.

Machine Translation Translation

Faux Polyglot: A Study on Information Disparity in Multilingual Large Language Models

no code implementations7 Jul 2024 Nikhil Sharma, Kenton Murray, Ziang Xiao

We found that LLMs displayed systemic bias towards information in the same language as the query language in both information retrieval and answer generation.

Answer Generation Information Retrieval +2

Evaluating Large Language Models along Dimensions of Language Variation: A Systematik Invesdigatiom uv Cross-lingual Generalization

1 code implementation19 Jun 2024 Niyati Bafna, Kenton Murray, David Yarowsky

While large language models exhibit certain cross-lingual generalization capabilities, they suffer from performance degradation (PD) on unseen closely-related languages (CRLs) and dialects relative to their high-resource language neighbour (HRLN).

Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation

1 code implementation16 Jan 2024 Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton Murray, Young Jin Kim

However, even the top-performing 13B LLM-based translation models, like ALMA, does not match the performance of state-of-the-art conventional encoder-decoder translation models or larger-scale LLMs such as GPT-4.

Decoder Machine Translation +1

Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles

no code implementations4 Nov 2023 Weiting Tan, Haoran Xu, Lingfeng Shen, Shuyue Stella Li, Kenton Murray, Philipp Koehn, Benjamin Van Durme, Yunmo Chen

Large language models trained primarily in a monolingual setting have demonstrated their ability to generalize to machine translation using zero- and few-shot examples with in-context learning.

In-Context Learning Machine Translation +1

Linking Symptom Inventories using Semantic Textual Similarity

no code implementations8 Sep 2023 Eamonn Kennedy, Shashank Vadlamani, Hannah M Lindsey, Kelly S Peterson, Kristen Dams OConnor, Kenton Murray, Ronak Agarwal, Houshang H Amiri, Raeda K Andersen, Talin Babikian, David A Baron, Erin D Bigler, Karen Caeyenberghs, Lisa Delano-Wood, Seth G Disner, Ekaterina Dobryakova, Blessen C Eapen, Rachel M Edelstein, Carrie Esopenko, Helen M Genova, Elbert Geuze, Naomi J Goodrich-Hunsaker, Jordan Grafman, Asta K Haberg, Cooper B Hodges, Kristen R Hoskinson, Elizabeth S Hovenden, Andrei Irimia, Neda Jahanshad, Ruchira M Jha, Finian Keleher, Kimbra Kenney, Inga K Koerte, Spencer W Liebel, Abigail Livny, Marianne Lovstad, Sarah L Martindale, Jeffrey E Max, Andrew R Mayer, Timothy B Meier, Deleene S Menefee, Abdalla Z Mohamed, Stefania Mondello, Martin M Monti, Rajendra A Morey, Virginia Newcombe, Mary R Newsome, Alexander Olsen, Nicholas J Pastorek, Mary Jo Pugh, Adeel Razi, Jacob E Resch, Jared A Rowland, Kelly Russell, Nicholas P Ryan, Randall S Scheibel, Adam T Schmidt, Gershon Spitz, Jaclyn A Stephens, Assaf Tal, Leah D Talbert, Maria Carmela Tartaglia, Brian A Taylor, Sophia I Thomopoulos, Maya Troyanskaya, Eve M Valera, Harm Jan van der Horn, John D Van Horn, Ragini Verma, Benjamin SC Wade, Willian SC Walker, Ashley L Ware, J Kent Werner Jr, Keith Owen Yeates, Ross D Zafonte, Michael M Zeineh, Brandon Zielinski, Paul M Thompson, Frank G Hillary, David F Tate, Elisabeth A Wilde, Emily L Dennis

An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues.

Decision Making Semantic Textual Similarity +1

MegaWika: Millions of reports and their sources across 50 diverse languages

no code implementations13 Jul 2023 Samuel Barham, Orion Weller, Michelle Yuan, Kenton Murray, Mahsa Yarmohammadi, Zhengping Jiang, Siddharth Vashishtha, Alexander Martin, Anqi Liu, Aaron Steven White, Jordan Boyd-Graber, Benjamin Van Durme

To foster the development of new models for collaborative AI-assisted report generation, we introduce MegaWika, consisting of 13 million Wikipedia articles in 50 diverse languages, along with their 71 million referenced source materials.

Cross-Lingual Question Answering Retrieval +1

Why Does Zero-Shot Cross-Lingual Generation Fail? An Explanation and a Solution

no code implementations27 May 2023 Tianjian Li, Kenton Murray

Zero-shot cross-lingual transfer is when a multilingual model is trained to perform a task in one language and then is applied to another language.

Text Generation Zero-Shot Cross-Lingual Transfer

Exploring Representational Disparities Between Multilingual and Bilingual Translation Models

no code implementations23 May 2023 Neha Verma, Kenton Murray, Kevin Duh

Multilingual machine translation has proven immensely useful for both parameter efficiency and overall performance across many language pairs via complete multilingual parameter sharing.

Decoder Machine Translation +1

Towards Being Parameter-Efficient: A Stratified Sparsely Activated Transformer with Dynamic Capacity

1 code implementation3 May 2023 Haoran Xu, Maha Elbayad, Kenton Murray, Jean Maillard, Vedanuj Goswami

Mixture-of-experts (MoE) models that employ sparse activation have demonstrated effectiveness in significantly increasing the number of parameters while maintaining low computational requirements per token.

Machine Translation Translation

Language Agnostic Code-Mixing Data Augmentation by Predicting Linguistic Patterns

no code implementations14 Nov 2022 Shuyue Stella Li, Kenton Murray

In this work, we focus on intrasentential code-mixing and propose several different Synthetic Code-Mixing (SCM) data augmentation methods that outperform the baseline on downstream sentiment analysis tasks across various amounts of labeled gold data.

Data Augmentation Sentiment Analysis

The Importance of Being Parameters: An Intra-Distillation Method for Serious Gains

1 code implementation23 May 2022 Haoran Xu, Philipp Koehn, Kenton Murray

We first highlight the large sensitivity (contribution) gap among high-sensitivity and low-sensitivity parameters and show that the model generalization performance can be significantly improved after balancing the contribution of all parameters.

Machine Translation Natural Language Understanding +2

Por Qué Não Utiliser Alla Språk? Mixed Training with Gradient Optimization in Few-Shot Cross-Lingual Transfer

1 code implementation Findings (NAACL) 2022 Haoran Xu, Kenton Murray

The current state-of-the-art for few-shot cross-lingual transfer learning first trains on abundant labeled data in the source language and then fine-tunes with a few examples on the target language, termed target-adapting.

Cross-Lingual Transfer Model Selection +2

NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation

2 code implementations6 Dec 2021 Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Shrivastava, Samson Tan, Tongshuang Wu, Jascha Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, Ondrej Dusek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Tanya Goyal, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicolas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos P. H. S., Ananya B. Sai, Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen, Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, KV Aditya Srivatsa, Tony Sun, Mukund Varma T, A Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Gloria Wang, Zijie J. Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyi Wu, Witold Wydmański, Tianbao Xie, Usama Yaseen, Michael A. Yee, Jing Zhang, Yue Zhang

Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on.

Data Augmentation Diversity

BERT, mBERT, or BiBERT? A Study on Contextualized Embeddings for Neural Machine Translation

2 code implementations EMNLP 2021 Haoran Xu, Benjamin Van Durme, Kenton Murray

The success of bidirectional encoders using masked language models, such as BERT, on numerous natural language processing tasks has prompted researchers to attempt to incorporate these pre-trained models into neural machine translation (NMT) systems.

de-en Language Modelling +3

Data Augmentation by Concatenation for Low-Resource Translation: A Mystery and a Solution

no code implementations ACL (IWSLT) 2021 Toan Q. Nguyen, Kenton Murray, David Chiang

In this paper, we investigate the driving factors behind concatenation, a simple but effective data augmentation method for low-resource neural machine translation.

Data Augmentation Diversity +4

Joint Universal Syntactic and Semantic Parsing

1 code implementation12 Apr 2021 Elias Stengel-Eskin, Kenton Murray, Sheng Zhang, Aaron Steven White, Benjamin Van Durme

While numerous attempts have been made to jointly parse syntax and semantics, high performance in one domain typically comes at the price of performance in the other.

Semantic Parsing

Gradual Fine-Tuning for Low-Resource Domain Adaptation

2 code implementations EACL (AdaptNLP) 2021 Haoran Xu, Seth Ebner, Mahsa Yarmohammadi, Aaron Steven White, Benjamin Van Durme, Kenton Murray

Fine-tuning is known to improve NLP models by adapting an initial model trained on more plentiful but less domain-salient examples to data in a target domain.

Domain Adaptation

The JHU Submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase for Language Education

no code implementations WS 2020 Huda Khayrallah, Jacob Bremerman, Arya D. McCarthy, Kenton Murray, Winston Wu, Matt Post

This paper presents the Johns Hopkins University submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase for Language Education (STAPLE).

Machine Translation Translation

Efficiency through Auto-Sizing: Notre Dame NLP's Submission to the WNGT 2019 Efficiency Task

no code implementations WS 2019 Kenton Murray, Brian DuSell, David Chiang

We investigated the impact of auto-sizing (Murray and Chiang, 2015; Murray et al., 2019) to the Transformer network (Vaswani et al., 2017) with the goal of substantially reducing the number of parameters in the model.

Cannot find the paper you are looking for? You can Submit a new open access paper.