Search Results for author: Keunhong Park

Found 7 papers, 4 papers with code

Nerfies: Deformable Neural Radiance Fields

2 code implementations ICCV 2021 Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M. Seitz, Ricardo Martin-Brualla

We present the first method capable of photorealistically reconstructing deformable scenes using photos/videos captured casually from mobile phones.

3D Human Reconstruction

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields

2 code implementations24 Jun 2021 Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-Brualla, Steven M. Seitz

A common approach to reconstruct such non-rigid scenes is through the use of a learned deformation field mapping from coordinates in each input image into a canonical template coordinate space.

Novel View Synthesis

PhotoShape: Photorealistic Materials for Large-Scale Shape Collections

1 code implementation26 Sep 2018 Keunhong Park, Konstantinos Rematas, Ali Farhadi, Steven M. Seitz

Existing online 3D shape repositories contain thousands of 3D models but lack photorealistic appearance.

FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category Modelling

no code implementations17 Apr 2021 Christopher Xie, Keunhong Park, Ricardo Martin-Brualla, Matthew Brown

We investigate the use of Neural Radiance Fields (NeRF) to learn high quality 3D object category models from collections of input images.

Object

CamP: Camera Preconditioning for Neural Radiance Fields

no code implementations21 Aug 2023 Keunhong Park, Philipp Henzler, Ben Mildenhall, Jonathan T. Barron, Ricardo Martin-Brualla

We propose using a proxy problem to compute a whitening transform that eliminates the correlation between camera parameters and normalizes their effects, and we propose to use this transform as a preconditioner for the camera parameters during joint optimization.

Cannot find the paper you are looking for? You can Submit a new open access paper.