Search Results for author: Kevin Maik Jablonka

Found 11 papers, 6 papers with code

ChemPile: A 250GB Diverse and Curated Dataset for Chemical Foundation Models

no code implementations18 May 2025 Adrian Mirza, Nawaf Alampara, Martiño Ríos-García, Mohamed Abdelalim, Jack Butler, Bethany Connolly, Tunca Dogan, Marianna Nezhurina, Bünyamin Şen, Santosh Tirunagari, Mark Worrall, Adamo Young, Philippe Schwaller, Michael Pieler, Kevin Maik Jablonka

Foundation models have shown remarkable success across scientific domains, yet their impact in chemistry remains limited due to the absence of diverse, large-scale, high-quality datasets that reflect the field's multifaceted nature.

Articles Benchmarking

Lessons from the trenches on evaluating machine-learning systems in materials science

no code implementations13 Mar 2025 Nawaf Alampara, Mara Schilling-Wilhelmi, Kevin Maik Jablonka

Measurements are fundamental to knowledge creation in science, enabling consistent sharing of findings and serving as the foundation for scientific discovery.

scientific discovery

Probing the limitations of multimodal language models for chemistry and materials research

3 code implementations25 Nov 2024 Nawaf Alampara, Mara Schilling-Wilhelmi, Martiño Ríos-García, Indrajeet Mandal, Pranav Khetarpal, Hargun Singh Grover, N. M. Anoop Krishnan, Kevin Maik Jablonka

Recent advancements in artificial intelligence have sparked interest in scientific assistants that could support researchers across the full spectrum of scientific workflows, from literature review to experimental design and data analysis.

Experimental Design Spatial Reasoning

Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry

1 code implementation20 Nov 2024 Yoel Zimmermann, Adib Bazgir, Zartashia Afzal, Fariha Agbere, Qianxiang Ai, Nawaf Alampara, Alexander Al-Feghali, Mehrad Ansari, Dmytro Antypov, Amro Aswad, Jiaru Bai, Viktoriia Baibakova, Devi Dutta Biswajeet, Erik Bitzek, Joshua D. Bocarsly, Anna Borisova, Andres M Bran, L. Catherine Brinson, Marcel Moran Calderon, Alessandro Canalicchio, Victor Chen, Yuan Chiang, Defne Circi, Benjamin Charmes, Vikrant Chaudhary, Zizhang Chen, Min-Hsueh Chiu, Judith Clymo, Kedar Dabhadkar, Nathan Daelman, Archit Datar, Wibe A. de Jong, Matthew L. Evans, Maryam Ghazizade Fard, Giuseppe Fisicaro, Abhijeet Sadashiv Gangan, Janine George, Jose D. Cojal Gonzalez, Michael Götte, Ankur K. Gupta, Hassan Harb, Pengyu Hong, Abdelrahman Ibrahim, Ahmed Ilyas, Alishba Imran, Kevin Ishimwe, Ramsey Issa, Kevin Maik Jablonka, Colin Jones, Tyler R. Josephson, Greg Juhasz, Sarthak Kapoor, Rongda Kang, Ghazal Khalighinejad, Sartaaj Khan, Sascha Klawohn, Suneel Kuman, Alvin Noe Ladines, Sarom Leang, Magdalena Lederbauer, Sheng-Lun, Liao, Hao liu, Xuefeng Liu, Stanley Lo, Sandeep Madireddy, Piyush Ranjan Maharana, Shagun Maheshwari, Soroush Mahjoubi, José A. Márquez, Rob Mills, Trupti Mohanty, Bernadette Mohr, Seyed Mohamad Moosavi, Alexander Moßhammer, Amirhossein D. Naghdi, Aakash Naik, Oleksandr Narykov, Hampus Näsström, Xuan Vu Nguyen, Xinyi Ni, Dana O'Connor, Teslim Olayiwola, Federico Ottomano, Aleyna Beste Ozhan, Sebastian Pagel, Chiku Parida, Jaehee Park, Vraj Patel, Elena Patyukova, Martin Hoffmann Petersen, Luis Pinto, José M. Pizarro, Dieter Plessers, Tapashree Pradhan, Utkarsh Pratiush, Charishma Puli, Andrew Qin, Mahyar Rajabi, Francesco Ricci, Elliot Risch, Martiño Ríos-García, Aritra Roy, Tehseen Rug, Hasan M Sayeed, Markus Scheidgen, Mara Schilling-Wilhelmi, Marcel Schloz, Fabian Schöppach, Julia Schumann, Philippe Schwaller, Marcus Schwarting, Samiha Sharlin, Kevin Shen, Jiale Shi, Pradip Si, Jennifer D'Souza, Taylor Sparks, Suraj Sudhakar, Leopold Talirz, Dandan Tang, Olga Taran, Carla Terboven, Mark Tropin, Anastasiia Tsymbal, Katharina Ueltzen, Pablo Andres Unzueta, Archit Vasan, Tirtha Vinchurkar, Trung Vo, Gabriel Vogel, Christoph Völker, Jan Weinreich, Faradawn Yang, Mohd Zaki, Chi Zhang, Sylvester Zhang, Weijie Zhang, Ruijie Zhu, Shang Zhu, Jan Janssen, Calvin Li, Ian Foster, Ben Blaiszik

Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions.

Language Modeling Language Modelling +2

From Text to Insight: Large Language Models for Materials Science Data Extraction

no code implementations23 Jul 2024 Mara Schilling-Wilhelmi, Martiño Ríos-García, Sherjeel Shabih, María Victoria Gil, Santiago Miret, Christoph T. Koch, José A. Márquez, Kevin Maik Jablonka

The vast majority of materials science knowledge exists in unstructured natural language, yet structured data is crucial for innovative and systematic materials design.

MatText: Do Language Models Need More than Text & Scale for Materials Modeling?

1 code implementation25 Jun 2024 Nawaf Alampara, Santiago Miret, Kevin Maik Jablonka

This challenge is further compounded by the absence of a comprehensive benchmark to rigorously evaluate the capabilities and limitations of these text representations in capturing the complexity of material systems.

Benchmarking

A reproducibility study of "Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space"

no code implementations1 Feb 2021 Kevin Maik Jablonka, Fergus Mcilwaine, Susana Garcia, Berend Smit, Brian Yoo

The main claims of the paper are that this GA outperforms other generative techniques (as measured by the penalized logP) and that a neural network-based adaptive penalty increases the diversity of the generated molecules.

Diversity

Big-Data Science in Porous Materials: Materials Genomics and Machine Learning

no code implementations18 Jan 2020 Kevin Maik Jablonka, Daniele Ongari, Seyed Mohamad Moosavi, Berend Smit

The review also includes a general overview of the different ML techniques, but as most applications in porous materials use supervised ML our review is focused on the different approaches for supervised ML.

BIG-bench Machine Learning Small Data Image Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.