no code implementations • 13 Mar 2023 • Brandon Silva, Miguel Contreras, Tezcan Ozrazgat Baslanti, Yuanfang Ren, Guan Ziyuan, Kia Khezeli, Azra Bihorac, Parisa Rashidi
In this work, we develop a machine learning system for real-time prediction of ADB using Electronic Health Record (HER) data.
no code implementations • 11 Mar 2023 • Subhash Nerella, Ziyuan Guan, Scott Siegel, Jiaqing Zhang, Kia Khezeli, Azra Bihorac, Parisa Rashidi
However, the extent of patient monitoring in the ICU is limited due to time constraints and the workload on healthcare providers.
no code implementations • 11 Mar 2023 • Sabyasachi Bandyopadhyay, Ahna Cecil, Jessica Sena, Andrea Davidson, Ziyuan Guan, Subhash Nerella, Jiaqing Zhang, Kia Khezeli, Brooke Armfield, Azra Bihorac, Parisa Rashidi
This study shows that ambient light and noise intensities are strong predictors of long-term delirium incidence in the ICU.
no code implementations • 12 Nov 2022 • Subhash Nerella, Kia Khezeli, Andrea Davidson, Patrick Tighe, Azra Bihorac, Parisa Rashidi
In this work, we evaluated two vision transformer models, namely ViT and SWIN, for AU detection on our Pain-ICU dataset and also external datasets.
no code implementations • 22 Dec 2021 • Ryan T. Scott, Erik L. Antonsen, Lauren M. Sanders, Jaden J. A. Hastings, Seung-min Park, Graham Mackintosh, Robert J. Reynolds, Adrienne L. Hoarfrost, Aenor Sawyer, Casey S. Greene, Benjamin S. Glicksberg, Corey A. Theriot, Daniel C. Berrios, Jack Miller, Joel Babdor, Richard Barker, Sergio E. Baranzini, Afshin Beheshti, Stuart Chalk, Guillermo M. Delgado-Aparicio, Melissa Haendel, Arif A. Hamid, Philip Heller, Daniel Jamieson, Katelyn J. Jarvis, John Kalantari, Kia Khezeli, Svetlana V. Komarova, Matthieu Komorowski, Prachi Kothiyal, Ashish Mahabal, Uri Manor, Hector Garcia Martin, Christopher E. Mason, Mona Matar, George I. Mias, Jerry G. Myers, Jr., Charlotte Nelson, Jonathan Oribello, Patricia Parsons-Wingerter, R. K. Prabhu, Amina Ann Qutub, Jon Rask, Amanda Saravia-Butler, Suchi Saria, Nitin Kumar Singh, Frank Soboczenski, Michael Snyder, Karthik Soman, David Van Valen, Kasthuri Venkateswaran, Liz Warren, Liz Worthey, Jason H. Yang, Marinka Zitnik, Sylvain V. Costes
Human space exploration beyond low Earth orbit will involve missions of significant distance and duration.
no code implementations • 22 Dec 2021 • Lauren M. Sanders, Jason H. Yang, Ryan T. Scott, Amina Ann Qutub, Hector Garcia Martin, Daniel C. Berrios, Jaden J. A. Hastings, Jon Rask, Graham Mackintosh, Adrienne L. Hoarfrost, Stuart Chalk, John Kalantari, Kia Khezeli, Erik L. Antonsen, Joel Babdor, Richard Barker, Sergio E. Baranzini, Afshin Beheshti, Guillermo M. Delgado-Aparicio, Benjamin S. Glicksberg, Casey S. Greene, Melissa Haendel, Arif A. Hamid, Philip Heller, Daniel Jamieson, Katelyn J. Jarvis, Svetlana V. Komarova, Matthieu Komorowski, Prachi Kothiyal, Ashish Mahabal, Uri Manor, Christopher E. Mason, Mona Matar, George I. Mias, Jack Miller, Jerry G. Myers Jr., Charlotte Nelson, Jonathan Oribello, Seung-min Park, Patricia Parsons-Wingerter, R. K. Prabhu, Robert J. Reynolds, Amanda Saravia-Butler, Suchi Saria, Aenor Sawyer, Nitin Kumar Singh, Frank Soboczenski, Michael Snyder, Karthik Soman, Corey A. Theriot, David Van Valen, Kasthuri Venkateswaran, Liz Warren, Liz Worthey, Marinka Zitnik, Sylvain V. Costes
Space biology research aims to understand fundamental effects of spaceflight on organisms, develop foundational knowledge to support deep space exploration, and ultimately bioengineer spacecraft and habitats to stabilize the ecosystem of plants, crops, microbes, animals, and humans for sustained multi-planetary life.
no code implementations • 14 Nov 2021 • Odhran O'Donoghue, Paul Duckworth, Giuseppe Ughi, Linus Scheibenreif, Kia Khezeli, Adrienne Hoarfrost, Samuel Budd, Patrick Foley, Nicholas Chia, John Kalantari, Graham Mackintosh, Frank Soboczenski, Lauren Sanders
In this work, we augment small human medical datasets with in-vitro data and animal models.
2 code implementations • 14 Oct 2021 • Garrett Jenkinson, Gavin R. Oliver, Kia Khezeli, John Kalantari, Eric W. Klee
Despite the pervasiveness of ordinal labels in supervised learning, it remains common practice in deep learning to treat such problems as categorical classification using the categorical cross entropy loss.
no code implementations • 17 Jun 2021 • Kia Khezeli, Arno Blaas, Frank Soboczenski, Nicholas Chia, John Kalantari
We discuss the role of its eigenvalues in the relationship between the risk and the invariance penalty, and demonstrate that it is ill-conditioned for said counterexamples.
no code implementations • 15 Sep 2020 • Sattar Vakili, Kia Khezeli, Victor Picheny
For the Mat\'ern family of kernels, where the lower bounds on $\gamma_T$, and regret under the frequentist setting, are known, our results close a huge polynomial in $T$ gap between the upper and lower bounds (up to logarithmic in $T$ factors).
no code implementations • 21 Nov 2019 • Kia Khezeli, Eilyan Bitar
We introduce the safe linear stochastic bandit framework---a generalization of linear stochastic bandits---where, in each stage, the learner is required to select an arm with an expected reward that is no less than a predetermined (safe) threshold with high probability.
no code implementations • 23 Jul 2017 • Kia Khezeli, Eilyan Bitar
Assuming that both the parameters of the demand curve and the distribution of the random shocks are initially unknown to the aggregator, we investigate the extent to which the aggregator might dynamically adapt its offered prices and forward contracts to maximize its expected profit over a time window of $T$ days.
no code implementations • 21 Nov 2016 • Kia Khezeli, Eilyan Bitar
Assuming that both the parameters of the demand curve and the distribution of the random shocks are initially unknown to the utility, we investigate the extent to which the utility might dynamically adjust its offered prices to maximize its cumulative risk-sensitive payoff over a finite number of $T$ days.