no code implementations • 12 Apr 2024 • Amit Sharma, Teodor-Dumitru Ene, Kishor Kunal, Mingjie Liu, Zafar Hasan, Haoxing Ren
This paper presents a comparative analysis of total cost of ownership (TCO) and performance between domain-adapted large language models (LLM) and state-of-the-art (SoTA) LLMs , with a particular emphasis on tasks related to coding assistance for chip design.
no code implementations • 31 Oct 2023 • Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang, Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, Bonita Bhaskaran, Bryan Catanzaro, Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang, Parikshit Deshpande, Siddhanth Dhodhi, Sameer Halepete, Eric Hill, Jiashang Hu, Sumit Jain, Ankit Jindal, Brucek Khailany, George Kokai, Kishor Kunal, Xiaowei Li, Charley Lind, Hao liu, Stuart Oberman, Sujeet Omar, Ghasem Pasandi, Sreedhar Pratty, Jonathan Raiman, Ambar Sarkar, Zhengjiang Shao, Hanfei Sun, Pratik P Suthar, Varun Tej, Walker Turner, Kaizhe Xu, Haoxing Ren
ChipNeMo aims to explore the applications of large language models (LLMs) for industrial chip design.
no code implementations • 21 May 2021 • Sudipta Mondal, Susmita Dey Manasi, Kishor Kunal, S. Ramprasath, Sachin S. Sapatnekar
Graph neural networks (GNN) analysis engines are vital for real-world problems that use large graph models.
no code implementations • 30 Sep 2020 • Kishor Kunal, Jitesh Poojary, Tonmoy Dhar, Meghna Madhusudan, Ramesh Harjani, Sachin S. Sapatnekar
Analog layout synthesis requires some elements in the circuit netlist to be matched and placed symmetrically.