no code implementations • 30 Oct 2021 • Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood
This paper explores the environmental impact of the super-linear growth trends for AI from a holistic perspective, spanning Data, Algorithms, and System Hardware.
no code implementations • 5 Nov 2020 • Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark C. Jeffrey, Vikram Saraph, Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat, Brandon Lucia, Carole-Jean Wu
The paper is the first to the extent of our knowledge to perform a data-driven, in-depth analysis of applying partial recovery to recommendation models and identified a trade-off between accuracy and performance.
no code implementations • 4 Dec 2019 • Kiwan Maeng, Iskender Kushan, Brandon Lucia, Ashish Kapoor
We propose a framework to collect stratospheric data by releasing a contrail of tiny sensor devices as a weather balloon ascends.