no code implementations • 27 May 2023 • Neel Kanwal, Trygve Eftestol, Farbod Khoraminia, Tahlita CM Zuiverloon, Kjersti Engan
Computational Pathology (CPATH) systems have the potential to automate diagnostic tasks.
no code implementations • 21 Mar 2023 • Zahra Tabatabaei, Adrian colomer, Kjersti Engan, Javier Oliver, Valery Naranjo
In particular, a tailored Convolutional Auto Encoder (CAE) is trained to reconstruct 128x128x3 patches of prostate cancer Whole Slide Images (WSIs) as a pretext task.
no code implementations • 15 Mar 2023 • Luca Tomasetti, Kjersti Engan, Liv Jorunn Høllesli, Kathinka Dæhli Kurz, Mahdieh Khanmohammadi
CT Perfusion (CTP) is often used as a primary assessment to determine stroke location, severity, and volume of ischemic lesions.
no code implementations • 14 Mar 2023 • Øyvind Meinich-Bache, Simon Lennart Austnes, Kjersti Engan, Ivar Austvoll, Trygve Eftestøl, Helge Myklebust, Simeon Kusulla, Hussein Kidanto, Hege Ersdal
An important step is to generate timelines of relevant resuscitation activities, including ventilation, stimulation, suction, etc., during the resuscitation episodes.
no code implementations • 14 Mar 2023 • Øyvind Meinich-Bache, Kjersti Engan, Ivar Austvoll, Trygve Eftestøl, Helge Myklebust, Ladislaus Blacy Yarrot, Hussein Kidanto, Hege Ersdal
Significance: This is the first step in a thorough analysis of newborn resuscitation episodes, which could provide important insight about the importance and effect of different newborn resuscitation activities
no code implementations • 10 Mar 2023 • Christopher Andreassen, Saul Fuster, Helga Hardardottir, Emiel A. M. Janssen, Kjersti Engan
Melanoma prognosis is based on a pathologist's subjective visual analysis of the patient's tumor.
no code implementations • 9 Mar 2023 • Saul Fuster, Farbod Khoraminia, Trygve Eftestøl, Tahlita C. M. Zuiverloon, Kjersti Engan
Accurate segmentation of tissue in histopathological images can be very beneficial for defining regions of interest (ROI) for streamline of diagnostic and prognostic tasks.
1 code implementation • 2 Mar 2023 • Luca Tomasetti, Stine Hansen, Mahdieh Khanmohammadi, Kjersti Engan, Liv Jorunn Høllesli, Kathinka Dæhli Kurz, Michael Kampffmeyer
Precise ischemic lesion segmentation plays an essential role in improving diagnosis and treatment planning for ischemic stroke, one of the prevalent diseases with the highest mortality rate.
1 code implementation • 6 Feb 2023 • Neel Kanwal, Roger Amundsen, Helga Hardardottir, Luca Tomasetti, Erling Sandoy Undersrud, Emiel A. M. Janssen, Kjersti Engan
Our method detects lesions with high accuracy and localizes them on a WSI to identify potential regions of interest for pathologists.
1 code implementation • 18 Mar 2022 • Luca Tomasetti, Mahdieh Khanmohammadi, Kjersti Engan, Liv Jorunn Høllesli, Kathinka Dæhli Kurz
We propose an automatic method based on a neural network using a set of parametric maps to segment the two ischemic regions (core and penumbra) in patients affected by acute ischemic stroke.
1 code implementation • 1 Nov 2021 • Saul Fuster, Trygve Eftestøl, Kjersti Engan
Strongly supervised learning requires detailed knowledge of truth labels at instance levels, and in many machine learning applications this is a major drawback.
1 code implementation • 7 Apr 2021 • Luca Tomasetti, Kjersti Engan, Mahdieh Khanmohammadi, Kathinka Dæhli Kurz
However, there is no consensus in terms of which thresholds to use, or how to combine the information from the parametric maps, and the presented methods all have limitations in terms of both accuracy and reproducibility.