no code implementations • 10 Apr 2023 • Saikat Roy, Tassilo Wald, Gregor Koehler, Maximilian R. Rokuss, Nico Disch, Julius Holzschuh, David Zimmerer, Klaus H. Maier-Hein
Foundation models have taken over natural language processing and image generation domains due to the flexibility of prompting.
no code implementations • 25 Mar 2023 • Constantin Ulrich, Fabian Isensee, Tassilo Wald, Maximilian Zenk, Michael Baumgartner, Klaus H. Maier-Hein
Our findings offer a new direction for the medical imaging community to effectively utilize the wealth of available data for improved segmentation performance.
no code implementations • 20 Mar 2023 • Michael Baumgartner, Peter M. Full, Klaus H. Maier-Hein
The accurate detection of mediastinal lesions is one of the rarely explored medical object detection problems.
no code implementations • 30 Jan 2023 • Karol Gotkowski, Shuvam Gupta, Jose R. A. Godinho, Camila G. S. Tochtrop, Klaus H. Maier-Hein, Fabian Isensee
Our approach is based on the powerful nnU-Net framework, introduces a particle size normalization, makes use of a border-core representation to enable instance segmentation and is trained with a large dataset containing particles of numerous different materials and minerals.
no code implementations • 5 Jan 2023 • Carsten T. Lüth, David Zimmerer, Gregor Koehler, Paul F. Jaeger, Fabian Isensee, Jens Petersen, Klaus H. Maier-Hein
By utilizing the representations of contrastive learning, we aim to fix the over-fixation on low-level features and learn more semantic-rich representations.
1 code implementation • 4 Nov 2022 • M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu, Ali Hatamizadeh, Andriy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang, Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Mohammad Zalbagi Darestani, Charlie Budd, Marc Modat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal, Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger, Michael Baumgartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D. Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris Shuaib, Keyvan Farahani, Klaus H. Maier-Hein, Stephen Aylward, Prerna Dogra, Sebastien Ourselin, Andrew Feng
For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e. g. geometry, physiology, physics) of medical data being processed.
no code implementations • 7 Oct 2022 • Constantin Seibold, Simon Reiß, Saquib Sarfraz, Matthias A. Fink, Victoria Mayer, Jan Sellner, Moon Sung Kim, Klaus H. Maier-Hein, Jens Kleesiek, Rainer Stiefelhagen
To exploit anatomical structures in this scenario, we present a sophisticated automatic pipeline to gather and integrate human bodily structures from computed tomography datasets, which we incorporate in our PAXRay: A Projected dataset for the segmentation of Anatomical structures in X-Ray data.
no code implementations • 23 Aug 2022 • Fabian Isensee, Constantin Ulrich, Tassilo Wald, Klaus H. Maier-Hein
Semantic segmentation is one of the most popular research areas in medical image computing.
2 code implementations • 23 Jun 2021 • Jens Petersen, Fabian Isensee, Gregor Köhler, Paul F. Jäger, David Zimmerer, Ulf Neuberger, Wolfgang Wick, Jürgen Debus, Sabine Heiland, Martin Bendszus, Philipp Vollmuth, Klaus H. Maier-Hein
The ability to estimate how a tumor might evolve in the future could have tremendous clinical benefits, from improved treatment decisions to better dose distribution in radiation therapy.
1 code implementation • 9 Jun 2021 • Jens Petersen, Gregor Köhler, David Zimmerer, Fabian Isensee, Paul F. Jäger, Klaus H. Maier-Hein
Neural Processes (NPs) are a family of conditional generative models that are able to model a distribution over functions, in a way that allows them to perform predictions at test time conditioned on a number of context points.
1 code implementation • 1 Jun 2021 • Michael Baumgartner, Paul F. Jaeger, Fabian Isensee, Klaus H. Maier-Hein
Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions often depend on rating of objects rather than e. g. pixels.
3 code implementations • 2 Nov 2020 • Fabian Isensee, Paul F. Jaeger, Peter M. Full, Philipp Vollmuth, Klaus H. Maier-Hein
We apply nnU-Net to the segmentation task of the BraTS 2020 challenge.
no code implementations • 27 Apr 2020 • Fabian Isensee, Klaus H. Maier-Hein
Segmentation of endoscopic images is an essential processing step for computer and robotics-assisted interventions.
no code implementations • 23 Mar 2020 • Tobias Ross, Annika Reinke, Peter M. Full, Martin Wagner, Hannes Kenngott, Martin Apitz, Hellena Hempe, Diana Mindroc Filimon, Patrick Scholz, Thuy Nuong Tran, Pierangela Bruno, Pablo Arbeláez, Gui-Bin Bian, Sebastian Bodenstedt, Jon Lindström Bolmgren, Laura Bravo-Sánchez, Hua-Bin Chen, Cristina González, Dong Guo, Pål Halvorsen, Pheng-Ann Heng, Enes Hosgor, Zeng-Guang Hou, Fabian Isensee, Debesh Jha, Tingting Jiang, Yueming Jin, Kadir Kirtac, Sabrina Kletz, Stefan Leger, Zhixuan Li, Klaus H. Maier-Hein, Zhen-Liang Ni, Michael A. Riegler, Klaus Schoeffmann, Ruohua Shi, Stefanie Speidel, Michael Stenzel, Isabell Twick, Gutai Wang, Jiacheng Wang, Liansheng Wang, Lu Wang, Yu-Jie Zhang, Yan-Jie Zhou, Lei Zhu, Manuel Wiesenfarth, Annette Kopp-Schneider, Beat P. Müller-Stich, Lena Maier-Hein
The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data.
1 code implementation • 17 Jan 2020 • A. Emre Kavur, N. Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir Groza, Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, Bora Baydar, Dmitry Lachinov, Shuo Han, Josef Pauli, Fabian Isensee, Matthias Perkonigg, Rachana Sathish, Ronnie Rajan, Debdoot Sheet, Gurbandurdy Dovletov, Oliver Speck, Andreas Nürnberger, Klaus H. Maier-Hein, Gözde BOZDAĞI AKAR, Gözde Ünal, Oğuz Dicle, M. Alper Selver
The analysis shows that the performance of DL models for single modality (CT / MR) can show reliable volumetric analysis performance (DICE: 0. 98 $\pm$ 0. 00 / 0. 95 $\pm$ 0. 01) but the best MSSD performance remain limited (21. 89 $\pm$ 13. 94 / 20. 85 $\pm$ 10. 63 mm).
3 code implementations • 2 Dec 2019 • Nicholas Heller, Fabian Isensee, Klaus H. Maier-Hein, Xiaoshuai Hou, Chunmei Xie, Fengyi Li, Yang Nan, Guangrui Mu, Zhiyong Lin, Miofei Han, Guang Yao, Yaozong Gao, Yao Zhang, Yixin Wang, Feng Hou, Jiawei Yang, Guangwei Xiong, Jiang Tian, Cheng Zhong, Jun Ma, Jack Rickman, Joshua Dean, Bethany Stai, Resha Tejpaul, Makinna Oestreich, Paul Blake, Heather Kaluzniak, Shaneabbas Raza, Joel Rosenberg, Keenan Moore, Edward Walczak, Zachary Rengel, Zach Edgerton, Ranveer Vasdev, Matthew Peterson, Sean McSweeney, Sarah Peterson, Arveen Kalapara, Niranjan Sathianathen, Nikolaos Papanikolopoulos, Christopher Weight
The 2019 Kidney and Kidney Tumor Segmentation challenge (KiTS19) was a competition held in conjunction with the 2019 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) which sought to address these issues and stimulate progress on this automatic segmentation problem.
no code implementations • 28 Nov 2019 • David Zimmerer, Jens Petersen, Simon A. A. Kohl, Klaus H. Maier-Hein
Through training on unlabeled data, anomaly detection has the potential to impact computer-aided diagnosis by outlining suspicious regions.
no code implementations • 26 Nov 2019 • Ahmed Hosny, Michael Schwier, Christoph Berger, Evin P Örnek, Mehmet Turan, Phi V Tran, Leon Weninger, Fabian Isensee, Klaus H. Maier-Hein, Richard McKinley, Michael T Lu, Udo Hoffmann, Bjoern Menze, Spyridon Bakas, Andriy Fedorov, Hugo JWL Aerts
Recent advances in artificial intelligence research have led to a profusion of studies that apply deep learning to problems in image analysis and natural language processing among others.
1 code implementation • 6 Aug 2019 • Fabian Isensee, Klaus H. Maier-Hein
The U-Net is arguably the most successful segmentation architecture in the medical domain.
2 code implementations • 22 Jul 2019 • Gregor N. Ramien, Paul F. Jaeger, Simon A. A. Kohl, Klaus H. Maier-Hein
To this end, we propose Reg R-CNN, which replaces the second-stage classification model of a current object detector with a regression model.
1 code implementation • 9 Jul 2019 • Jens Petersen, Paul F. Jäger, Fabian Isensee, Simon A. A. Kohl, Ulf Neuberger, Wolfgang Wick, Jürgen Debus, Sabine Heiland, Martin Bendszus, Philipp Kickingereder, Klaus H. Maier-Hein
Existing approaches to modeling the dynamics of brain tumor growth, specifically glioma, employ biologically inspired models of cell diffusion, using image data to estimate the associated parameters.
4 code implementations • 30 May 2019 • Simon A. A. Kohl, Bernardino Romera-Paredes, Klaus H. Maier-Hein, Danilo Jimenez Rezende, S. M. Ali Eslami, Pushmeet Kohli, Andrew Zisserman, Olaf Ronneberger
Medical imaging only indirectly measures the molecular identity of the tissue within each voxel, which often produces only ambiguous image evidence for target measures of interest, like semantic segmentation.
4 code implementations • 17 Apr 2019 • Fabian Isensee, Paul F. Jäger, Simon A. A. Kohl, Jens Petersen, Klaus H. Maier-Hein
Biomedical imaging is a driver of scientific discovery and core component of medical care, currently stimulated by the field of deep learning.
2 code implementations • 29 Jan 2019 • Jakob Wasserthal, Peter Neher, Dusan Hirjak, Klaus H. Maier-Hein
It is based on a learned mapping from the original fiber orientation distribution function (FOD) peaks to tract specific peaks, called tract orientation maps.
no code implementations • 14 Dec 2018 • David Zimmerer, Simon A. A. Kohl, Jens Petersen, Fabian Isensee, Klaus H. Maier-Hein
Unsupervised learning can leverage large-scale data sources without the need for annotations.
6 code implementations • 21 Nov 2018 • Paul F. Jaeger, Simon A. A. Kohl, Sebastian Bickelhaupt, Fabian Isensee, Tristan Anselm Kuder, Heinz-Peter Schlemmer, Klaus H. Maier-Hein
The proposed architecture recaptures discarded supervision signals by complementing object detection with an auxiliary task in the form of semantic segmentation without introducing the additional complexity of previously proposed two-stage detectors.
1 code implementation • 5 Nov 2018 • Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze
This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.
no code implementations • 27 Sep 2018 • Fabian Isensee, Philipp Kickingereder, Wolfgang Wick, Martin Bendszus, Klaus H. Maier-Hein
By incorporating additional measures such as region based training, additional training data, a simple postprocessing technique and a combination of loss functions, we obtain Dice scores of 77. 88, 87. 81 and 80. 62, and Hausdorff Distances (95th percentile) of 2. 90, 6. 03 and 5. 08 for the enhancing tumor, whole tumor and tumor core, respectively on the test data.
6 code implementations • 27 Sep 2018 • Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F. Jaeger, Simon Kohl, Jakob Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, Klaus H. Maier-Hein
The U-Net was presented in 2015.
Ranked #3 on
Medical Image Segmentation
on Synapse multi-organ CT
no code implementations • 17 Jul 2018 • Jennifer Kamphenkel, Paul F. Jaeger, Sebastian Bickelhaupt, Frederik Bernd Laun, Wolfgang Lederer, Heidi Daniel, Tristan Anselm Kuder, Stefan Delorme, Heinz-Peter Schlemmer, Franziska Koenig, Klaus H. Maier-Hein
We propose model-based domain adaptation to overcome input dependencies and avoid re-training of networks at clinical sites by restoring training inputs from altered input channels given during deployment.
2 code implementations • 14 Jun 2018 • Jakob Wasserthal, Peter F. Neher, Klaus H. Maier-Hein
While the major white matter tracts are of great interest to numerous studies in neuroscience and medicine, their manual dissection in larger cohorts from diffusion MRI tractograms is time-consuming, requires expert knowledge and is hard to reproduce.
8 code implementations • NeurIPS 2018 • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
To this end we propose a generative segmentation model based on a combination of a U-Net with a conditional variational autoencoder that is capable of efficiently producing an unlimited number of plausible hypotheses.
3 code implementations • 18 May 2018 • Jakob Wasserthal, Peter Neher, Klaus H. Maier-Hein
The individual course of white matter fiber tracts is an important key for analysis of white matter characteristics in healthy and diseased brains.
no code implementations • 3 Apr 2018 • André Klein, Jan Warszawski, Jens Hillengaß, Klaus H. Maier-Hein
Bone segmentation from CT images is a task that has been worked on for decades.
7 code implementations • 28 Feb 2018 • Fabian Isensee, Philipp Kickingereder, Wolfgang Wick, Martin Bendszus, Klaus H. Maier-Hein
Quantitative analysis of brain tumors is critical for clinical decision making.
Ranked #2 on
Brain Tumor Segmentation
on BRATS-2015
1 code implementation • 3 Jul 2017 • Fabian Isensee, Paul Jaeger, Peter M. Full, Ivo Wolf, Sandy Engelhardt, Klaus H. Maier-Hein
We evaluated our method on the ACDC dataset (4 pathology groups, 1 healthy group) and achieve dice scores of 0. 945 (LVC), 0. 908 (RVC) and 0. 905 (LVM) in a cross-validation over the training set (100 cases) and 0. 950 (LVC), 0. 923 (RVC) and 0. 911 (LVM) on the test set (50 cases).
no code implementations • 6 Mar 2017 • Jakob Wasserthal, Peter F. Neher, Fabian Isensee, Klaus H. Maier-Hein
We present a novel supervised approach for direct tract segmentation that shows major performance gains.
no code implementations • 27 Feb 2017 • Paul Jaeger, Sebastian Bickelhaupt, Frederik Bernd Laun, Wolfgang Lederer, Daniel Heidi, Tristan Anselm Kuder, Daniel Paech, David Bonekamp, Alexander Radbruch, Stefan Delorme, Heinz-Peter Schlemmer, Franziska Steudle, Klaus H. Maier-Hein
Mammography screening for early detection of breast lesions currently suffers from high amounts of false positive findings, which result in unnecessary invasive biopsies.