no code implementations • 28 Sep 2022 • Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham, Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Soňa Mokrá, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac, John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, Geoffrey Irving
We present Sparrow, an information-seeking dialogue agent trained to be more helpful, correct, and harmless compared to prompted language model baselines.
1 code implementation • DeepMind 2022 • Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d'Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, Oriol Vinyals
Programming is a powerful and ubiquitous problem-solving tool.
Ranked #1 on
Code Generation
on CodeContests
no code implementations • 2 Feb 2022 • Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, George van den Driessche, Eliza Rutherford, Tom Hennigan, Matthew Johnson, Katie Millican, Albin Cassirer, Chris Jones, Elena Buchatskaya, David Budden, Laurent SIfre, Simon Osindero, Oriol Vinyals, Jack Rae, Erich Elsen, Koray Kavukcuoglu, Karen Simonyan
The performance of a language model has been shown to be effectively modeled as a power-law in its parameter count.
no code implementations • NA 2021 • Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent SIfre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d'Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, Geoffrey Irving
Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world.
Ranked #1 on
College Mathematics
on BIG-bench
(using extra training data)
5 code implementations • Nature 2021 • John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, Demis Hassabis
Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics.
8 code implementations • NeurIPS 2020 • Jean-bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Remi Munos, Michal Valko
From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view.
28 code implementations • 13 Jun 2020 • Jean-bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, Michal Valko
From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view.
Ranked #2 on
Self-Supervised Person Re-Identification
on SYSU-30k
Representation Learning
Self-Supervised Image Classification
+3
1 code implementation • 4 Mar 2019 • Piotr Mirowski, Andras Banki-Horvath, Keith Anderson, Denis Teplyashin, Karl Moritz Hermann, Mateusz Malinowski, Matthew Koichi Grimes, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman, Raia Hadsell
These datasets cannot be used for decision-making and reinforcement learning, however, and in general the perspective of navigation as an interactive learning task, where the actions and behaviours of a learning agent are learned simultaneously with the perception and planning, is relatively unsupported.
no code implementations • 3 Jul 2018 • Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia Castaneda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Koray Kavukcuoglu, Thore Graepel
Recent progress in artificial intelligence through reinforcement learning (RL) has shown great success on increasingly complex single-agent environments and two-player turn-based games.
3 code implementations • NeurIPS 2018 • Piotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith Anderson, Denis Teplyashin, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman, Raia Hadsell
We present an interactive navigation environment that uses Google StreetView for its photographic content and worldwide coverage, and demonstrate that our learning method allows agents to learn to navigate multiple cities and to traverse to target destinations that may be kilometres away.
1 code implementation • 28 Mar 2018 • Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-Barwinska, Jack Rae, Piotr Mirowski, Joel Z. Leibo, Adam Santoro, Mevlana Gemici, Malcolm Reynolds, Tim Harley, Josh Abramson, Shakir Mohamed, Danilo Rezende, David Saxton, Adam Cain, Chloe Hillier, David Silver, Koray Kavukcuoglu, Matt Botvinick, Demis Hassabis, Timothy Lillicrap
Animals execute goal-directed behaviours despite the limited range and scope of their sensors.
15 code implementations • ICML 2018 • Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lockhart, Florian Stimberg, Aaron van den Oord, Sander Dieleman, Koray Kavukcuoglu
The small number of weights in a Sparse WaveRNN makes it possible to sample high-fidelity audio on a mobile CPU in real time.
20 code implementations • ICML 2018 • Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, Koray Kavukcuoglu
In this work we aim to solve a large collection of tasks using a single reinforcement learning agent with a single set of parameters.
Ranked #3 on
Atari Games
on Atari 2600 Skiing
(using extra training data)
2 code implementations • ICML 2018 • Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C. Cobo, Florian Stimberg, Norman Casagrande, Dominik Grewe, Seb Noury, Sander Dieleman, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alex Graves, Helen King, Tom Walters, Dan Belov, Demis Hassabis
The recently-developed WaveNet architecture is the current state of the art in realistic speech synthesis, consistently rated as more natural sounding for many different languages than any previous system.
9 code implementations • 27 Nov 2017 • Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, Koray Kavukcuoglu
Neural networks dominate the modern machine learning landscape, but their training and success still suffer from sensitivity to empirical choices of hyperparameters such as model architecture, loss function, and optimisation algorithm.
44 code implementations • NeurIPS 2017 • Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu
Learning useful representations without supervision remains a key challenge in machine learning.
1 code implementation • ICLR 2018 • Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu
We explore efficient neural architecture search methods and show that a simple yet powerful evolutionary algorithm can discover new architectures with excellent performance.
no code implementations • ICML 2017 • Alex Graves, Marc G. Bellemare, Jacob Menick, Remi Munos, Koray Kavukcuoglu
We introduce a method for automatically selecting the path, or syllabus, that a neural network follows through a curriculum so as to maximise learning efficiency.
1 code implementation • ICML 2017 • Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, Koray Kavukcuoglu
We introduce FeUdal Networks (FuNs): a novel architecture for hierarchical reinforcement learning.
Hierarchical Reinforcement Learning
reinforcement-learning
+1
1 code implementation • ICML 2017 • Wojciech Marian Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals, Koray Kavukcuoglu
When training neural networks, the use of Synthetic Gradients (SG) allows layers or modules to be trained without update locking - without waiting for a true error gradient to be backpropagated - resulting in Decoupled Neural Interfaces (DNIs).
7 code implementations • NeurIPS 2016 • Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu
Here we introduce the interaction network, a model which can reason about how objects in complex systems interact, supporting dynamical predictions, as well as inferences about the abstract properties of the system.
3 code implementations • 16 Nov 2016 • Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David Silver, Koray Kavukcuoglu
We also introduce a novel mechanism for focusing this representation upon extrinsic rewards, so that learning can rapidly adapt to the most relevant aspects of the actual task.
1 code implementation • 11 Nov 2016 • Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J. Ballard, Andrea Banino, Misha Denil, Ross Goroshin, Laurent SIfre, Koray Kavukcuoglu, Dharshan Kumaran, Raia Hadsell
Learning to navigate in complex environments with dynamic elements is an important milestone in developing AI agents.
no code implementations • 5 Nov 2016 • Brendan O'Donoghue, Remi Munos, Koray Kavukcuoglu, Volodymyr Mnih
Policy gradient is an efficient technique for improving a policy in a reinforcement learning setting.
8 code implementations • 3 Nov 2016 • Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, Nando de Freitas
This paper presents an actor-critic deep reinforcement learning agent with experience replay that is stable, sample efficient, and performs remarkably well on challenging environments, including the discrete 57-game Atari domain and several continuous control problems.
10 code implementations • 31 Oct 2016 • Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, Koray Kavukcuoglu
The ByteNet is a one-dimensional convolutional neural network that is composed of two parts, one to encode the source sequence and the other to decode the target sequence.
Ranked #1 on
Machine Translation
on WMT2015 English-German
1 code implementation • ICML 2017 • Nal Kalchbrenner, Aaron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves, Koray Kavukcuoglu
The VPN approaches the best possible performance on the Moving MNIST benchmark, a leap over the previous state of the art, and the generated videos show only minor deviations from the ground truth.
Ranked #1 on
Video Prediction
on KTH
(Cond metric)
60 code implementations • 12 Sep 2016 • Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu
This paper introduces WaveNet, a deep neural network for generating raw audio waveforms.
Ranked #1 on
Speech Synthesis
on Mandarin Chinese
5 code implementations • ICML 2017 • Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David Silver, Koray Kavukcuoglu
Training directed neural networks typically requires forward-propagating data through a computation graph, followed by backpropagating error signal, to produce weight updates.
14 code implementations • NeurIPS 2016 • Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, Koray Kavukcuoglu
This work explores conditional image generation with a new image density model based on the PixelCNN architecture.
Ranked #10 on
Image Generation
on ImageNet 32x32
(bpd metric)
no code implementations • NeurIPS 2016 • Alexander, Vezhnevets, Volodymyr Mnih, John Agapiou, Simon Osindero, Alex Graves, Oriol Vinyals, Koray Kavukcuoglu
We present a novel deep recurrent neural network architecture that learns to build implicit plans in an end-to-end manner by purely interacting with an environment in reinforcement learning setting.
9 code implementations • 15 Jun 2016 • Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell
Learning to solve complex sequences of tasks--while both leveraging transfer and avoiding catastrophic forgetting--remains a key obstacle to achieving human-level intelligence.
26 code implementations • NeurIPS 2016 • Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra
Our algorithm improves one-shot accuracy on ImageNet from 87. 6% to 93. 2% and from 88. 0% to 93. 8% on Omniglot compared to competing approaches.
2 code implementations • NeurIPS 2016 • S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray Kavukcuoglu, Geoffrey E. Hinton
We present a framework for efficient inference in structured image models that explicitly reason about objects.
no code implementations • 8 Feb 2016 • Sander Dieleman, Jeffrey De Fauw, Koray Kavukcuoglu
We evaluate the effect of these architectural modifications on three datasets which exhibit rotational symmetry and demonstrate improved performance with smaller models.
71 code implementations • 4 Feb 2016 • Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu
We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers.
Ranked #9 on
Atari Games
on Atari 2600 Star Gunner
17 code implementations • 25 Jan 2016 • Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu
Modeling the distribution of natural images is a landmark problem in unsupervised learning.
Ranked #4 on
Image Generation
on Binarized MNIST
1 code implementation • 19 Nov 2015 • Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, Raia Hadsell
Policies for complex visual tasks have been successfully learned with deep reinforcement learning, using an approach called deep Q-networks (DQN), but relatively large (task-specific) networks and extensive training are needed to achieve good performance.
3 code implementations • 15 Jul 2015 • Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu, David Silver
We present the first massively distributed architecture for deep reinforcement learning.
Ranked #17 on
Atari Games
on Atari 2600 Private Eye
1 code implementation • NeurIPS 2015 • Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, Koray Kavukcuoglu
We introduce Natural Neural Networks, a novel family of algorithms that speed up convergence by adapting their internal representation during training to improve conditioning of the Fisher matrix.
44 code implementations • NeurIPS 2015 • Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu
Convolutional Neural Networks define an exceptionally powerful class of models, but are still limited by the lack of ability to be spatially invariant to the input data in a computationally and parameter efficient manner.
34 code implementations • 20 May 2015 • Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, Daan Wierstra
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop.
7 code implementations • 25 Feb 2015 • Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg1 & Demis Hassabis
We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters.
5 code implementations • 24 Dec 2014 • Jimmy Ba, Volodymyr Mnih, Koray Kavukcuoglu
We present an attention-based model for recognizing multiple objects in images.
18 code implementations • NeurIPS 2014 • Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu
Applying convolutional neural networks to large images is computationally expensive because the amount of computation scales linearly with the number of image pixels.
no code implementations • 20 Dec 2013 • Yunlong He, Koray Kavukcuoglu, Yun Wang, Arthur Szlam, Yanjun Qi
In this paper, we propose a new unsupervised feature learning framework, namely Deep Sparse Coding (DeepSC), that extends sparse coding to a multi-layer architecture for visual object recognition tasks.
109 code implementations • 19 Dec 2013 • Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning.
Ranked #1 on
Atari Games
on Atari 2600 Pong
no code implementations • NeurIPS 2013 • Andriy Mnih, Koray Kavukcuoglu
Continuous-valued word embeddings learned by neural language models have recently been shown to capture semantic and syntactic information about words very well, setting performance records on several word similarity tasks.
no code implementations • NeurIPS 2012 • Yunlong He, Yanjun Qi, Koray Kavukcuoglu, Haesun Park
In this paper, we study latent factor models with the dependency structure in the latent space.
no code implementations • CVPR 2013 • Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, Yann Lecun
Pedestrian detection is a problem of considerable practical interest.
2 code implementations • 2 Mar 2011 • Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen, Koray Kavukcuoglu, Pavel Kuksa
We propose a unified neural network architecture and learning algorithm that can be applied to various natural language processing tasks including: part-of-speech tagging, chunking, named entity recognition, and semantic role labeling.
no code implementations • NeurIPS 2010 • Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michael Mathieu, Yann L. Cun
We propose an unsupervised method for learning multi-stage hierarchies of sparse convolutional features.