no code implementations • 28 Oct 2024 • Jan Witowski, Ken Zeng, Joseph Cappadona, Jailan Elayoubi, Elena Diana Chiru, Nancy Chan, Young-Joon Kang, Frederick Howard, Irina Ostrovnaya, Carlos Fernandez-Granda, Freya Schnabel, Ugur Ozerdem, Kangning Liu, Zoe Steinsnyder, Nitya Thakore, Mohammad Sadic, Frank Yeung, Elisa Liu, Theodore Hill, Benjamin Swett, Danielle Rigau, Andrew Clayburn, Valerie Speirs, Marcus Vetter, Lina Sojak, Simone Muenst Soysal, Daniel Baumhoer, Khalil Choucair, Yu Zong, Lina Daoud, Anas Saad, Waleed Abdulsattar, Rafic Beydoun, Jia-Wern Pan, Haslina Makmur, Soo-Hwang Teo, Linda Ma Pak, Victor Angel, Dovile Zilenaite-Petrulaitiene, Arvydas Laurinavicius, Natalie Klar, Brian D. Piening, Carlo Bifulco, Sun-Young Jun, Jae Pak Yi, Su Hyun Lim, Adam Brufsky, Francisco J. Esteva, Lajos Pusztai, Yann Lecun, Krzysztof J. Geras
Treatment selection in breast cancer is guided by molecular subtypes and clinical characteristics.
no code implementations • 27 May 2024 • Yanqi Xu, Yiqiu Shen, Carlos Fernandez-Granda, Laura Heacock, Krzysztof J. Geras
This study evaluates the applicability of these transformer-based design choices when applied to a screening mammography dataset that represents these distinct medical imaging data characteristics.
no code implementations • 6 Nov 2023 • Yiqiu Shen, Jungkyu Park, Frank Yeung, Eliana Goldberg, Laura Heacock, Farah Shamout, Krzysztof J. Geras
Breast cancer screening, primarily conducted through mammography, is often supplemented with ultrasound for women with dense breast tissue.
2 code implementations • CVPR 2023 • Kangning Liu, Weicheng Zhu, Yiqiu Shen, Sheng Liu, Narges Razavian, Krzysztof J. Geras, Carlos Fernandez-Granda
The framework employs a novel self-paced sampling strategy to ensure the accuracy of pseudo labels.
1 code implementation • 16 Oct 2022 • Jungkyu Park, Jakub Chłędowski, Stanisław Jastrzębski, Jan Witowski, Yanqi Xu, Linda Du, Sushma Gaddam, Eric Kim, Alana Lewin, Ujas Parikh, Anastasia Plaunova, Sardius Chen, Alexandra Millet, James Park, Kristine Pysarenko, Shalin Patel, Julia Goldberg, Melanie Wegener, Linda Moy, Laura Heacock, Beatriu Reig, Krzysztof J. Geras
On a dataset collected at NYU Langone Health, including 85, 526 patients with full-field 2D mammography (FFDM), synthetic 2D mammography, and 3D mammography, 3D-GMIC achieves an AUC of 0. 831 (95% CI: 0. 769-0. 887) in classifying breasts with malignant findings using 3D mammography.
1 code implementation • 14 Jul 2022 • Nasir Hayat, Krzysztof J. Geras, Farah E. Shamout
Multi-modal fusion approaches aim to integrate information from different data sources.
Ranked #1 on Phenotype classification on MIMIC-CXR, MIMIC-IV
1 code implementation • 10 Feb 2022 • Nan Wu, Stanisław Jastrzębski, Kyunghyun Cho, Krzysztof J. Geras
We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning.
2 code implementations • 8 Feb 2022 • Taro Makino, Krzysztof J. Geras, Kyunghyun Cho
We propose generative multitask learning (GMTL), a simple and scalable approach to causal representation learning for multitask learning.
no code implementations • 4 Nov 2021 • Nasir Hayat, Krzysztof J. Geras, Farah E. Shamout
The healthcare domain is characterized by heterogeneous data modalities, such as imaging and physiological data.
no code implementations • 29 Sep 2021 • Nan Wu, Stanislaw Kamil Jastrzebski, Kyunghyun Cho, Krzysztof J. Geras
We refer to this gain as the conditional utilization rate of the modality.
1 code implementation • 10 Aug 2021 • Benjamin Stadnick, Jan Witowski, Vishwaesh Rajiv, Jakub Chłędowski, Farah E. Shamout, Kyunghyun Cho, Krzysztof J. Geras
Artificial intelligence (AI) is showing promise in improving clinical diagnosis.
1 code implementation • 13 Jun 2021 • Kangning Liu, Yiqiu Shen, Nan Wu, Jakub Chłędowski, Carlos Fernandez-Granda, Krzysztof J. Geras
In cancer diagnosis, interpretability can be achieved by localizing the region of the input image responsible for the output, i. e. the location of a lesion.
1 code implementation • 13 Jan 2021 • Anuroop Sriram, Matthew Muckley, Koustuv Sinha, Farah Shamout, Joelle Pineau, Krzysztof J. Geras, Lea Azour, Yindalon Aphinyanaphongs, Nafissa Yakubova, William Moore
The first is deterioration prediction from a single image, where our model achieves an area under receiver operating characteristic curve (AUC) of 0. 742 for predicting an adverse event within 96 hours (compared to 0. 703 with supervised pretraining) and an AUC of 0. 765 for predicting oxygen requirements greater than 6 L a day at 24 hours (compared to 0. 749 with supervised pretraining).
1 code implementation • 28 Nov 2020 • Taro Makino, Stanislaw Jastrzebski, Witold Oleszkiewicz, Celin Chacko, Robin Ehrenpreis, Naziya Samreen, Chloe Chhor, Eric Kim, Jiyon Lee, Kristine Pysarenko, Beatriu Reig, Hildegard Toth, Divya Awal, Linda Du, Alice Kim, James Park, Daniel K. Sodickson, Laura Heacock, Linda Moy, Kyunghyun Cho, Krzysztof J. Geras
We compare the two with respect to their robustness to Gaussian low-pass filtering, performing a subgroup analysis on microcalcifications and soft tissue lesions.
1 code implementation • 19 Oct 2020 • Jason Phang, Jungkyu Park, Krzysztof J. Geras
We find that the most important ingredients for high quality saliency map generation are (1) using both masked-in and masked-out objectives and (2) training the classifier alongside the masking model.
no code implementations • 19 Sep 2020 • Nan Wu, Zhe Huang, Yiqiu Shen, Jungkyu Park, Jason Phang, Taro Makino, S. Gene Kim, Kyunghyun Cho, Laura Heacock, Linda Moy, Krzysztof J. Geras
Breast cancer is the most common cancer in women, and hundreds of thousands of unnecessary biopsies are done around the world at a tremendous cost.
1 code implementation • 4 Aug 2020 • Farah E. Shamout, Yiqiu Shen, Nan Wu, Aakash Kaku, Jungkyu Park, Taro Makino, Stanisław Jastrzębski, Duo Wang, Ben Zhang, Siddhant Dogra, Meng Cao, Narges Razavian, David Kudlowitz, Lea Azour, William Moore, Yvonne W. Lui, Yindalon Aphinyanaphongs, Carlos Fernandez-Granda, Krzysztof J. Geras
In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time.
no code implementations • 23 Mar 2020 • Witold Oleszkiewicz, Taro Makino, Stanisław Jastrzębski, Tomasz Trzciński, Linda Moy, Kyunghyun Cho, Laura Heacock, Krzysztof J. Geras
Deep neural networks (DNNs) show promise in breast cancer screening, but their robustness to input perturbations must be better understood before they can be clinically implemented.
1 code implementation • 13 Feb 2020 • Yiqiu Shen, Nan Wu, Jason Phang, Jungkyu Park, Kangning Liu, Sudarshini Tyagi, Laura Heacock, S. Gene Kim, Linda Moy, Kyunghyun Cho, Krzysztof J. Geras
In this work, we extend the globally-aware multiple instance classifier, a framework we proposed to address these unique properties of medical images.
no code implementations • MIDL 2019 • Nan Wu, Stanisław Jastrzębski, Jungkyu Park, Linda Moy, Kyunghyun Cho, Krzysztof J. Geras
In breast cancer screening, radiologists make the diagnosis based on images that are taken from two angles.
no code implementations • 1 Aug 2019 • Thibault Févry, Jason Phang, Nan Wu, S. Gene Kim, Linda Moy, Kyunghyun Cho, Krzysztof J. Geras
We trained and evaluated a localization-based deep CNN for breast cancer screening exam classification on over 200, 000 exams (over 1, 000, 000 images).
no code implementations • 30 Jul 2019 • Jungkyu Park, Jason Phang, Yiqiu Shen, Nan Wu, S. Gene Kim, Linda Moy, Kyunghyun Cho, Krzysztof J. Geras
Radiologists typically compare a patient's most recent breast cancer screening exam to their previous ones in making informed diagnoses.
no code implementations • 7 Jun 2019 • Yiqiu Shen, Nan Wu, Jason Phang, Jungkyu Park, Gene Kim, Linda Moy, Kyunghyun Cho, Krzysztof J. Geras
Moreover, both the global structure and local details play important roles in medical image analysis tasks.
2 code implementations • 20 Mar 2019 • Nan Wu, Jason Phang, Jungkyu Park, Yiqiu Shen, Zhe Huang, Masha Zorin, Stanisław Jastrzębski, Thibault Févry, Joe Katsnelson, Eric Kim, Stacey Wolfson, Ujas Parikh, Sushma Gaddam, Leng Leng Young Lin, Kara Ho, Joshua D. Weinstein, Beatriu Reig, Yiming Gao, Hildegard Toth, Kristine Pysarenko, Alana Lewin, Jiyon Lee, Krystal Airola, Eralda Mema, Stephanie Chung, Esther Hwang, Naziya Samreen, S. Gene Kim, Laura Heacock, Linda Moy, Kyunghyun Cho, Krzysztof J. Geras
We present a deep convolutional neural network for breast cancer screening exam classification, trained and evaluated on over 200, 000 exams (over 1, 000, 000 images).
12 code implementations • 21 Nov 2018 • Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, C. Lawrence Zitnick, Michael P. Recht, Daniel K. Sodickson, Yvonne W. Lui
Accelerating Magnetic Resonance Imaging (MRI) by taking fewer measurements has the potential to reduce medical costs, minimize stress to patients and make MRI possible in applications where it is currently prohibitively slow or expensive.
1 code implementation • ICLR 2019 • Konrad Zolna, Krzysztof J. Geras, Kyunghyun Cho
To address this problem, we propose classifier-agnostic saliency map extraction, which finds all parts of the image that any classifier could use, not just one given in advance.
1 code implementation • 10 Nov 2017 • Nan Wu, Krzysztof J. Geras, Yiqiu Shen, Jingyi Su, S. Gene Kim, Eric Kim, Stacey Wolfson, Linda Moy, Kyunghyun Cho
Breast density classification is an essential part of breast cancer screening.
2 code implementations • 21 Mar 2017 • Krzysztof J. Geras, Stacey Wolfson, Yiqiu Shen, Nan Wu, S. Gene Kim, Eric Kim, Laura Heacock, Ujas Parikh, Linda Moy, Kyunghyun Cho
In our work, we propose to use a multi-view deep convolutional neural network that handles a set of high-resolution medical images.
no code implementations • 19 Nov 2015 • Krzysztof J. Geras, Abdel-rahman Mohamed, Rich Caruana, Gregor Urban, Shengjie Wang, Ozlem Aslan, Matthai Philipose, Matthew Richardson, Charles Sutton
We consider whether deep convolutional networks (CNNs) can represent decision functions with similar accuracy as recurrent networks such as LSTMs.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +3
1 code implementation • 12 Jun 2014 • Krzysztof J. Geras, Charles Sutton
We present a representation learning method that learns features at multiple different levels of scale.