1 code implementation • 11 Jul 2024 • Kumail Alhamoud, Yasir Ghunaim, Motasem Alfarra, Thomas Hartvigsen, Philip Torr, Bernard Ghanem, Adel Bibi, Marzyeh Ghassemi
In response, we introduce FedMedICL, a unified framework and benchmark to holistically evaluate federated medical imaging challenges, simultaneously capturing label, demographic, and temporal distribution shifts.
1 code implementation • CVPR 2023 • Yasir Ghunaim, Adel Bibi, Kumail Alhamoud, Motasem Alfarra, Hasan Abed Al Kader Hammoud, Ameya Prabhu, Philip H. S. Torr, Bernard Ghanem
We show that a simple baseline outperforms state-of-the-art CL methods under this evaluation, questioning the applicability of existing methods in realistic settings.
no code implementations • CVPR 2023 • Andrés Villa, Juan León Alcázar, Motasem Alfarra, Kumail Alhamoud, Julio Hurtado, Fabian Caba Heilbron, Alvaro Soto, Bernard Ghanem
In this paper, we address the problem of continual learning for video data.
no code implementations • 29 Sep 2022 • Kumail Alhamoud, Hasan Abed Al Kader Hammoud, Motasem Alfarra, Bernard Ghanem
Recent progress in empirical and certified robustness promises to deliver reliable and deployable Deep Neural Networks (DNNs).
no code implementations • CVPR 2022 • Andrés Villa, Kumail Alhamoud, Juan León Alcázar, Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem
We perform in-depth evaluations of existing CL methods in vCLIMB, and observe two unique challenges in video data.