no code implementations • 15 Oct 2022 • Anthony Zador, Sean Escola, Blake Richards, Bence Ölveczky, Yoshua Bengio, Kwabena Boahen, Matthew Botvinick, Dmitri Chklovskii, Anne Churchland, Claudia Clopath, James DiCarlo, Surya Ganguli, Jeff Hawkins, Konrad Koerding, Alexei Koulakov, Yann Lecun, Timothy Lillicrap, Adam Marblestone, Bruno Olshausen, Alexandre Pouget, Cristina Savin, Terrence Sejnowski, Eero Simoncelli, Sara Solla, David Sussillo, Andreas S. Tolias, Doris Tsao
Neuroscience has long been an essential driver of progress in artificial intelligence (AI).
no code implementations • 7 Mar 2017 • Ashok Cutkosky, Kwabena Boahen
The vast majority of optimization and online learning algorithms today require some prior information about the data (often in the form of bounds on gradients or on the optimal parameter value).
no code implementations • NeurIPS 2016 • Ashok Cutkosky, Kwabena Boahen
We propose an online convex optimization algorithm (RescaledExp) that achieves optimal regret in the unconstrained setting without prior knowledge of any bounds on the loss functions.