Search Results for author: Kwanghyun Park

Found 4 papers, 0 papers with code

End-to-end Optimization of Machine Learning Prediction Queries

no code implementations31 May 2022 Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi, Konstantinos Karanasos

First, it employs logical optimizations that pass information between the data part (and the properties of the underlying data) and the ML part to optimize each other.

BIG-bench Machine Learning

Query Processing on Tensor Computation Runtimes

no code implementations3 Mar 2022 Dong He, Supun Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos Karanasos, Matteo Interlandi

Finally, TQP can accelerate queries mixing ML predictions and SQL end-to-end, and deliver up to 9$\times$ speedup over CPU baselines.

Management

Extending Relational Query Processing with ML Inference

no code implementations1 Nov 2019 Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen, Kwanghyun Park, Ivan Popivanov, Supun Nakandal, Subru Krishnan, Markus Weimer, Yuan Yu, Raghu Ramakrishnan, Carlo Curino

The broadening adoption of machine learning in the enterprise is increasing the pressure for strict governance and cost-effective performance, in particular for the common and consequential steps of model storage and inference.

Cannot find the paper you are looking for? You can Submit a new open access paper.