Search Results for author: Kyle Lo

Found 41 papers, 26 papers with code

Decomposing Complex Queries for Tip-of-the-tongue Retrieval

no code implementations24 May 2023 Kevin Lin, Kyle Lo, Joseph E. Gonzalez, Dan Klein

When re-finding items, users who forget or are uncertain about identifying details often rely on creative strategies for expressing their information needs -- complex queries that describe content elements (e. g., book characters or events), information beyond the document text (e. g., descriptions of book covers), or personal context (e. g., when they read a book).

Retrieval

Complex Mathematical Symbol Definition Structures: A Dataset and Model for Coordination Resolution in Definition Extraction

no code implementations24 May 2023 Anna Martin-Boyle, Andrew Head, Kyle Lo, Risham Sidhu, Marti A. Hearst, Dongyeop Kang

We also introduce a new definition extraction method that masks mathematical symbols, creates a copy of each sentence for each symbol, specifies a target symbol, and predicts its corresponding definition spans using slot filling.

Definition Extraction slot-filling +1

A Controllable QA-based Framework for Decontextualization

no code implementations24 May 2023 Benjamin Newman, Luca Soldaini, Raymond Fok, Arman Cohan, Kyle Lo

We propose a question-answering framework for decontextualization that allows for better handling of user information needs and preferences when determining the scope of rewriting.

Question Answering

Beyond Summarization: Designing AI Support for Real-World Expository Writing Tasks

no code implementations5 Apr 2023 Zejiang Shen, Tal August, Pao Siangliulue, Kyle Lo, Jonathan Bragg, Jeff Hammerbacher, Doug Downey, Joseph Chee Chang, David Sontag

In this position paper, we argue that developing AI supports for expository writing has unique and exciting research challenges and can lead to high real-world impacts.

LongEval: Guidelines for Human Evaluation of Faithfulness in Long-form Summarization

1 code implementation30 Jan 2023 Kalpesh Krishna, Erin Bransom, Bailey Kuehl, Mohit Iyyer, Pradeep Dasigi, Arman Cohan, Kyle Lo

Motivated by our survey, we present LongEval, a set of guidelines for human evaluation of faithfulness in long-form summaries that addresses the following challenges: (1) How can we achieve high inter-annotator agreement on faithfulness scores?

BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

2 code implementations9 Nov 2022 BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions.

Language Modelling Multilingual NLP

SciFact-Open: Towards open-domain scientific claim verification

1 code implementation25 Oct 2022 David Wadden, Kyle Lo, Bailey Kuehl, Arman Cohan, Iz Beltagy, Lucy Lu Wang, Hannaneh Hajishirzi

While research on scientific claim verification has led to the development of powerful systems that appear to approach human performance, these approaches have yet to be tested in a realistic setting against large corpora of scientific literature.

Claim Verification Information Retrieval +1

Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities

1 code implementation22 Jun 2022 Zejiang Shen, Kyle Lo, Lauren Yu, Nathan Dahlberg, Margo Schlanger, Doug Downey

With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections.

Abstractive Text Summarization Document Summarization +1

Generating Scientific Claims for Zero-Shot Scientific Fact Checking

1 code implementation ACL 2022 Dustin Wright, David Wadden, Kyle Lo, Bailey Kuehl, Arman Cohan, Isabelle Augenstein, Lucy Lu Wang

To address this challenge, we propose scientific claim generation, the task of generating one or more atomic and verifiable claims from scientific sentences, and demonstrate its usefulness in zero-shot fact checking for biomedical claims.

Fact Checking

Paper Plain: Making Medical Research Papers Approachable to Healthcare Consumers with Natural Language Processing

1 code implementation28 Feb 2022 Tal August, Lucy Lu Wang, Jonathan Bragg, Marti A. Hearst, Andrew Head, Kyle Lo

When seeking information not covered in patient-friendly documents, like medical pamphlets, healthcare consumers may turn to the research literature.

MultiVerS: Improving scientific claim verification with weak supervision and full-document context

2 code implementations Findings (NAACL) 2022 David Wadden, Kyle Lo, Lucy Lu Wang, Arman Cohan, Iz Beltagy, Hannaneh Hajishirzi

Our approach outperforms two competitive baselines on three scientific claim verification datasets, with particularly strong performance in zero / few-shot domain adaptation experiments.

Claim Verification Domain Adaptation +1

Exploring The Role of Local and Global Explanations in Recommender Systems

no code implementations27 Sep 2021 Marissa Radensky, Doug Downey, Kyle Lo, Zoran Popović, Daniel S. Weld

However, we note that the two explanation approaches may be better compared in the context of a higher-stakes or more opaque domain.

Recommendation Systems

Overview and Insights from the SciVer Shared Task on Scientific Claim Verification

no code implementations NAACL (sdp) 2021 David Wadden, Kyle Lo

We present an overview of the SciVer shared task, presented at the 2nd Scholarly Document Processing (SDP) workshop at NAACL 2021.

Claim Verification

FLEX: Unifying Evaluation for Few-Shot NLP

2 code implementations NeurIPS 2021 Jonathan Bragg, Arman Cohan, Kyle Lo, Iz Beltagy

Few-shot NLP research is highly active, yet conducted in disjoint research threads with evaluation suites that lack challenging-yet-realistic testing setups and fail to employ careful experimental design.

Experimental Design Few-Shot Learning +1

VILA: Improving Structured Content Extraction from Scientific PDFs Using Visual Layout Groups

1 code implementation1 Jun 2021 Zejiang Shen, Kyle Lo, Lucy Lu Wang, Bailey Kuehl, Daniel S. Weld, Doug Downey

Experiments are conducted on a newly curated evaluation suite, S2-VLUE, that unifies existing automatically-labeled datasets and includes a new dataset of manual annotations covering diverse papers from 19 scientific disciplines.

Language Modelling Text Classification +2

Searching for Scientific Evidence in a Pandemic: An Overview of TREC-COVID

no code implementations19 Apr 2021 Kirk Roberts, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman, Kyle Lo, Ian Soboroff, Ellen Voorhees, Lucy Lu Wang, William R Hersh

We present an overview of the TREC-COVID Challenge, an information retrieval (IR) shared task to evaluate search on scientific literature related to COVID-19.

Information Retrieval Retrieval

Document-Level Definition Detection in Scholarly Documents: Existing Models, Error Analyses, and Future Directions

1 code implementation EMNLP (sdp) 2020 Dongyeop Kang, Andrew Head, Risham Sidhu, Kyle Lo, Daniel S. Weld, Marti A. Hearst

Based on this analysis, we develop a new definition detection system, HEDDEx, that utilizes syntactic features, transformer encoders, and heuristic filters, and evaluate it on a standard sentence-level benchmark.

Augmenting Scientific Papers with Just-in-Time, Position-Sensitive Definitions of Terms and Symbols

1 code implementation29 Sep 2020 Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg, Daniel S. Weld, Marti A. Hearst

We introduce ScholarPhi, an augmented reading interface with four novel features: (1) tooltips that surface position-sensitive definitions from elsewhere in a paper, (2) a filter over the paper that "declutters" it to reveal how the term or symbol is used across the paper, (3) automatic equation diagrams that expose multiple definitions in parallel, and (4) an automatically generated glossary of important terms and symbols.

TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection

no code implementations9 May 2020 Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman, William R Hersh, Kyle Lo, Kirk Roberts, Ian Soboroff, Lucy Lu Wang

TREC-COVID is a community evaluation designed to build a test collection that captures the information needs of biomedical researchers using the scientific literature during a pandemic.

Information Retrieval Retrieval

Fact or Fiction: Verifying Scientific Claims

2 code implementations EMNLP 2020 David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Cohan, Hannaneh Hajishirzi

We introduce scientific claim verification, a new task to select abstracts from the research literature containing evidence that SUPPORTS or REFUTES a given scientific claim, and to identify rationales justifying each decision.

Claim Verification Domain Adaptation +1

LIMEADE: From AI Explanations to Advice Taking

1 code implementation9 Mar 2020 Benjamin Charles Germain Lee, Doug Downey, Kyle Lo, Daniel S. Weld

We show our method improves accuracy compared to a rigorous baseline on the image classification domains.

BIG-bench Machine Learning Image Classification +1

S2ORC: The Semantic Scholar Open Research Corpus

2 code implementations ACL 2020 Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, Dan S. Weld

We introduce S2ORC, a large corpus of 81. 1M English-language academic papers spanning many academic disciplines.

Language Modelling

Discourse Understanding and Factual Consistency in Abstractive Summarization

no code implementations EACL 2021 Saadia Gabriel, Antoine Bosselut, Jeff Da, Ari Holtzman, Jan Buys, Kyle Lo, Asli Celikyilmaz, Yejin Choi

We introduce a general framework for abstractive summarization with factual consistency and distinct modeling of the narrative flow in an output summary.

Abstractive Text Summarization

SciBERT: A Pretrained Language Model for Scientific Text

5 code implementations IJCNLP 2019 Iz Beltagy, Kyle Lo, Arman Cohan

Obtaining large-scale annotated data for NLP tasks in the scientific domain is challenging and expensive.

 Ranked #1 on Sentence Classification on Paper Field (using extra training data)

Citation Intent Classification Dependency Parsing +6

Combining Distant and Direct Supervision for Neural Relation Extraction

1 code implementation NAACL 2019 Iz Beltagy, Kyle Lo, Waleed Ammar

In relation extraction with distant supervision, noisy labels make it difficult to train quality models.

Relation Extraction

Cannot find the paper you are looking for? You can Submit a new open access paper.