no code implementations • 19 Oct 2024 • Oussama Boussif, Léna Néhale Ezzine, Joseph D Viviano, Michał Koziarski, Moksh Jain, Nikolay Malkin, Emmanuel Bengio, Rim Assouel, Yoshua Bengio
As trajectories sampled by policies used by reinforcement learning (RL) and generative flow networks (GFlowNets) grow longer, credit assignment and exploration become more challenging, and the long planning horizon hinders mode discovery and generalization.
1 code implementation • 30 Jan 2023 • Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-García, Léna Néhale Ezzine, Yoshua Bengio, Nikolay Malkin
Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized target distributions over compositional objects.
1 code implementation • 19 May 2022 • Mike He Zhu, Léna Néhale Ezzine, Dianbo Liu, Yoshua Bengio
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.