no code implementations • 20 Mar 2022 • Alessandro Barp, Lancelot Da Costa, Guilherme França, Karl Friston, Mark Girolami, Michael I. Jordan, Grigorios A. Pavliotis
In this chapter, we identify fundamental geometric structures that underlie the problems of sampling, optimisation, inference and adaptive decision-making.
no code implementations • 22 Nov 2021 • Théophile Champion, Lancelot Da Costa, Howard Bowman, Marek Grześ
In this paper, we present an alternative framework that aims to unify tree search and active inference by casting planning as a structure learning problem.
no code implementations • 21 Sep 2021 • Noor Sajid, Lancelot Da Costa, Thomas Parr, Karl Friston
Conversely, active inference reduces to Bayesian decision theory in the absence of ambiguity and relative risk, i. e., expected utility maximization.
no code implementations • 12 Jul 2021 • Noor Sajid, Francesco Faccio, Lancelot Da Costa, Thomas Parr, Jürgen Schmidhuber, Karl Friston
Under the Bayesian brain hypothesis, behavioural variations can be attributed to different priors over generative model parameters.
no code implementations • 17 Sep 2020 • Lancelot Da Costa, Noor Sajid, Thomas Parr, Karl Friston, Ryan Smith
In this paper, we consider the relation between active inference and dynamic programming under the Bellman equation, which underlies many approaches to reinforcement learning and control.
no code implementations • 7 Jun 2020 • Karl Friston, Lancelot Da Costa, Danijar Hafner, Casper Hesp, Thomas Parr
In this paper, we consider a sophisticated kind of active inference, using a recursive form of expected free energy.
no code implementations • 22 Jan 2020 • Lancelot Da Costa, Thomas Parr, Biswa Sengupta, Karl Friston
We then show that these neuronal dynamics approximate natural gradient descent, a well-known optimisation algorithm from information geometry that follows the steepest descent of the objective in information space.