1 code implementation • 27 Nov 2024 • Lara Scavuzzo, Karen Aardal, Neil Yorke-Smith
Modern Mixed Integer Linear Programming (MILP) solvers use the Branch-and-Bound algorithm together with a plethora of auxiliary components that speed up the search.
no code implementations • 8 Feb 2024 • Lara Scavuzzo, Karen Aardal, Andrea Lodi, Neil Yorke-Smith
We also address how to represent MILPs in the context of applying learning algorithms, MILP benchmarks and software.
1 code implementation • 23 May 2022 • Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith, Karen Aardal
State-of-the-art Mixed Integer Linear Program (MILP) solvers combine systematic tree search with a plethora of hard-coded heuristics, such as the branching rule.
2 code implementations • 4 Mar 2022 • Maxime Gasse, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil, Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Christopher Morris, Dimitri J. Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang, Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei Huang, Shuchang Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, Mao Kun
Combinatorial optimization is a well-established area in operations research and computer science.
2 code implementations • NeurIPS Workshop LMCA 2020 • Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, Andrea Lodi
We present Ecole, a new library to simplify machine learning research for combinatorial optimization.