no code implementations • 12 Feb 2024 • Luis G. Varela, Laura E. Boucheron, Steven Sandoval, David Voelz, Abu Bucker Siddik
The non-uniform blur of atmospheric turbulence can be modeled as a superposition of linear motion blur kernels at a patch level.
no code implementations • 6 Nov 2023 • Ali Zafari, Atefeh Khoshkhahtinat, Jeremy A. Grajeda, Piyush M. Mehta, Nasser M. Nasrabadi, Laura E. Boucheron, Barbara J. Thompson, Michael S. F. Kirk, Daniel da Silva
In this work, we propose an adversarially trained neural network, equipped with local and non-local attention modules to capture both the local and global structure of the image resulting in a better trade-off in rate-distortion (RD) compared to conventional hand-engineered codecs.
1 code implementation • 2 Aug 2023 • Luis G. Varela, Laura E. Boucheron, Steven Sandoval, David Voelz, Abu Bucker Siddik
Many deblurring and blur kernel estimation methods use a maximum a posteriori (MAP) approach or deep learning-based classification techniques to sharpen an image and/or predict the blur kernel.
no code implementations • 16 May 2023 • Laura E. Boucheron, Ty Vincent, Jeremy A. Grajeda, Ellery Wuest
In this dataset we provide a comprehensive collection of magnetograms (images quantifying the strength of the magnetic field) from the National Aeronautics and Space Administration's (NASA's) Solar Dynamics Observatory (SDO).