no code implementations • 19 Mar 2025 • Martin Ritzert, Polina Turishcheva, Laura Hansel, Paul Wollenhaupt, Marissa Weis, Alexander Ecker
Hierarchical clustering is an effective and interpretable technique for analyzing structure in data, offering a nuanced understanding by revealing insights at multiple scales and resolutions.
no code implementations • 21 Oct 2024 • Polina Turishcheva, Laura Hansel, Martin Ritzert, Marissa A. Weis, Alexander S. Ecker
Driven by advances in recording technology, large-scale high-dimensional datasets have emerged across many scientific disciplines.
2 code implementations • 12 Jul 2024 • Polina Turishcheva, Paul G. Fahey, Michaela Vystrčilová, Laura Hansel, Rachel Froebe, Kayla Ponder, Yongrong Qiu, Konstantin F. Willeke, Mohammad Bashiri, Ruslan Baikulov, Yu Zhu, Lei Ma, Shan Yu, Tiejun Huang, Bryan M. Li, Wolf De Wulf, Nina Kudryashova, Matthias H. Hennig, Nathalie L. Rochefort, Arno Onken, Eric Wang, Zhiwei Ding, Andreas S. Tolias, Fabian H. Sinz, Alexander S Ecker
To address this gap, we established the Sensorium 2023 Benchmark Competition with dynamic input, featuring a new large-scale dataset from the primary visual cortex of ten mice.
3 code implementations • 31 May 2023 • Polina Turishcheva, Paul G. Fahey, Laura Hansel, Rachel Froebe, Kayla Ponder, Michaela Vystrčilová, Konstantin F. Willeke, Mohammad Bashiri, Eric Wang, Zhiwei Ding, Andreas S. Tolias, Fabian H. Sinz, Alexander S. Ecker
We hope this competition will continue to strengthen the accompanying Sensorium benchmarks collection as a standard tool to measure progress in large-scale neural system identification models of the entire mouse visual hierarchy and beyond.
no code implementations • 23 Dec 2021 • Marissa A. Weis, Laura Hansel, Timo Lüddecke, Alexander S. Ecker
GraphDINO is a novel transformer-based representation learning method for spatially-embedded graphs.