Search Results for author: Laura Kriener

Found 8 papers, 4 papers with code

Gradient-based methods for spiking physical systems

no code implementations29 Aug 2023 Julian Göltz, Sebastian Billaudelle, Laura Kriener, Luca Blessing, Christian Pehle, Eric Müller, Johannes Schemmel, Mihai A. Petrovici

Recent efforts have fostered significant progress towards deep learning in spiking networks, both theoretical and in silico.

NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking

no code implementations10 Apr 2023 Jason Yik, Soikat Hasan Ahmed, Zergham Ahmed, Brian Anderson, Andreas G. Andreou, Chiara Bartolozzi, Arindam Basu, Douwe den Blanken, Petrut Bogdan, Sander Bohte, Younes Bouhadjar, Sonia Buckley, Gert Cauwenberghs, Federico Corradi, Guido de Croon, Andreea Danielescu, Anurag Daram, Mike Davies, Yigit Demirag, Jason Eshraghian, Jeremy Forest, Steve Furber, Michael Furlong, Aditya Gilra, Giacomo Indiveri, Siddharth Joshi, Vedant Karia, Lyes Khacef, James C. Knight, Laura Kriener, Rajkumar Kubendran, Dhireesha Kudithipudi, Gregor Lenz, Rajit Manohar, Christian Mayr, Konstantinos Michmizos, Dylan Muir, Emre Neftci, Thomas Nowotny, Fabrizio Ottati, Ayca Ozcelikkale, Noah Pacik-Nelson, Priyadarshini Panda, Sun Pao-Sheng, Melika Payvand, Christian Pehle, Mihai A. Petrovici, Christoph Posch, Alpha Renner, Yulia Sandamirskaya, Clemens JS Schaefer, André van Schaik, Johannes Schemmel, Catherine Schuman, Jae-sun Seo, Sadique Sheik, Sumit Bam Shrestha, Manolis Sifalakis, Amos Sironi, Kenneth Stewart, Terrence C. Stewart, Philipp Stratmann, Guangzhi Tang, Jonathan Timcheck, Marian Verhelst, Craig M. Vineyard, Bernhard Vogginger, Amirreza Yousefzadeh, Biyan Zhou, Fatima Tuz Zohora, Charlotte Frenkel, Vijay Janapa Reddi

The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles.

Benchmarking

Learning efficient backprojections across cortical hierarchies in real time

no code implementations20 Dec 2022 Kevin Max, Laura Kriener, Garibaldi Pineda García, Thomas Nowotny, Walter Senn, Mihai A. Petrovici

Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas.

The Yin-Yang dataset

1 code implementation16 Feb 2021 Laura Kriener, Julian Göltz, Mihai A. Petrovici

The Yin-Yang dataset was developed for research on biologically plausible error backpropagation and deep learning in spiking neural networks.

Cannot find the paper you are looking for? You can Submit a new open access paper.