no code implementations • 23 May 2022 • Laura von Rueden, Sebastian Houben, Kostadin Cvejoski, Christian Bauckhage, Nico Piatkowski
In this paper, we propose a novel informed machine learning approach and suggest to pre-train on prior knowledge.
no code implementations • 10 May 2022 • Julian Wörmann, Daniel Bogdoll, Christian Brunner, Etienne Bührle, Han Chen, Evaristus Fuh Chuo, Kostadin Cvejoski, Ludger van Elst, Philip Gottschall, Stefan Griesche, Christian Hellert, Christian Hesels, Sebastian Houben, Tim Joseph, Niklas Keil, Johann Kelsch, Mert Keser, Hendrik Königshof, Erwin Kraft, Leonie Kreuser, Kevin Krone, Tobias Latka, Denny Mattern, Stefan Matthes, Franz Motzkus, Mohsin Munir, Moritz Nekolla, Adrian Paschke, Stefan Pilar von Pilchau, Maximilian Alexander Pintz, Tianming Qiu, Faraz Qureishi, Syed Tahseen Raza Rizvi, Jörg Reichardt, Laura von Rueden, Alexander Sagel, Diogo Sasdelli, Tobias Scholl, Gerhard Schunk, Gesina Schwalbe, Hao Shen, Youssef Shoeb, Hendrik Stapelbroek, Vera Stehr, Gurucharan Srinivas, Anh Tuan Tran, Abhishek Vivekanandan, Ya Wang, Florian Wasserrab, Tino Werner, Christian Wirth, Stefan Zwicklbauer
The availability of representative datasets is an essential prerequisite for many successful artificial intelligence and machine learning models.
no code implementations • 21 May 2021 • Katharina Beckh, Sebastian Müller, Matthias Jakobs, Vanessa Toborek, Hanxiao Tan, Raphael Fischer, Pascal Welke, Sebastian Houben, Laura von Rueden
This survey presents an overview of integrating prior knowledge into machine learning systems in order to improve explainability.
no code implementations • 15 Apr 2021 • Laura von Rueden, Tim Wirtz, Fabian Hueger, Jan David Schneider, Nico Piatkowski, Christian Bauckhage
Lastly, we present quantitative results on the Cityscapes dataset indicating that our validation approach can indeed uncover errors in semantic segmentation masks.
no code implementations • 3 Nov 2020 • Laura von Rueden, Tim Wirtz, Fabian Hueger, Jan David Schneider, Christian Bauckhage
Artificial intelligence for autonomous driving must meet strict requirements on safety and robustness.
1 code implementation • 29 Mar 2019 • Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauckhage, Jannis Schuecker
It considers the source of knowledge, its representation, and its integration into the machine learning pipeline.