Search Results for author: Lei Zhang

Found 371 papers, 131 papers with code

Momentum Batch Normalization for Deep Learning with Small Batch Size

no code implementations ECCV 2020 Hongwei Yong, Jianqiang Huang, Deyu Meng, Xian-Sheng Hua, Lei Zhang

To make a deeper understanding of BN, in this work we prove that BN actually introduces a certain level of noise into the sample mean and variance during the training process, while the noise level depends only on the batch size.

LST-Net: Learning a Convolutional Neural Network with a Learnable Sparse Transform

no code implementations ECCV 2020 Lida Li, Kun Wang, Shuai Li, Xiangchu Feng, Lei Zhang

The 2D convolutional (Conv2d) layer is the fundamental element to a deep convolutional neural network (CNN).

Multiple Domain Cyberspace Attack and Defense Game Based on Reward Randomization Reinforcement Learning

no code implementations23 May 2022 Lei Zhang, Yu Pan, Yi Liu, Qibin Zheng, Zhisong Pan

In order to improve the defense ability of defender, a game model based on reward randomization reinforcement learning is proposed.

reinforcement-learning

SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images

no code implementations25 Apr 2022 Zhishe Wang, Yanlin Chen, Wenyu Shao, Hui Li, Lei Zhang

The existing deep learning fusion methods mainly concentrate on the convolutional neural networks, and few attempts are made with transformer.

OTExtSum: Extractive Text Summarisation with Optimal Transport

1 code implementation21 Apr 2022 Peggy Tang, Kun Hu, Rui Yan, Lei Zhang, Junbin Gao, Zhiyong Wang

Optimal sentence extraction is conceptualised as obtaining an optimal summary that minimises the transportation cost to a given document regarding their semantic distributions.

Dense Learning based Semi-Supervised Object Detection

1 code implementation15 Apr 2022 Binghui Chen, Pengyu Li, Xiang Chen, Biao Wang, Lei Zhang, Xian-Sheng Hua

Semi-supervised object detection (SSOD) aims to facilitate the training and deployment of object detectors with the help of a large amount of unlabeled data.

Object Detection Semi-Supervised Object Detection

Rapid model transfer for medical image segmentation via iterative human-in-the-loop update: from labelled public to unlabelled clinical datasets for multi-organ segmentation in CT

no code implementations13 Apr 2022 Wenao Ma, Shuang Zheng, Lei Zhang, Huimao Zhang, Qi Dou

Despite the remarkable success on medical image analysis with deep learning, it is still under exploration regarding how to rapidly transfer AI models from one dataset to another for clinical applications.

Medical Image Segmentation Semantic Segmentation

Towards Reliable Image Outpainting: Learning Structure-Aware Multimodal Fusion with Depth Guidance

no code implementations12 Apr 2022 Lei Zhang, Kang Liao, Chunyu Lin, Yao Zhao

Image outpainting technology generates visually reasonable content regardless of authenticity, making it unreliable to serve for practical applications even though introducing additional modalities eg.

Image Outpainting

Large-Scale Pre-training for Person Re-identification with Noisy Labels

2 code implementations30 Mar 2022 Dengpan Fu, Dongdong Chen, Hao Yang, Jianmin Bao, Lu Yuan, Lei Zhang, Houqiang Li, Fang Wen, Dong Chen

Since theses ID labels automatically derived from tracklets inevitably contain noises, we develop a large-scale Pre-training framework utilizing Noisy Labels (PNL), which consists of three learning modules: supervised Re-ID learning, prototype-based contrastive learning, and label-guided contrastive learning.

Contrastive Learning Multi-Object Tracking +3

Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution

1 code implementation27 Mar 2022 Jie Liang, Hui Zeng, Lei Zhang

Specifically, a tiny regression network is employed to predict the degradation parameters of the input image, while several convolutional experts with the same topology are jointly optimized to specify the network parameters via a non-linear mixture of experts.

Image Super-Resolution

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds

1 code implementation19 Mar 2022 Chenhang He, Ruihuang Li, Shuai Li, Lei Zhang

VoxSeT is built upon a voxel-based set attention (VSA) module, which reduces the self-attention in each voxel by two cross-attentions and models features in a hidden space induced by a group of latent codes.

3D Object Detection

Towards Robust 2D Convolution for Reliable Visual Recognition

no code implementations18 Mar 2022 Lida Li, Shuai Li, Kun Wang, Xiangchu Feng, Lei Zhang

2D convolution (Conv2d), which is responsible for extracting features from the input image, is one of the key modules of a convolutional neural network (CNN).

Class-Balanced Pixel-Level Self-Labeling for Domain Adaptive Semantic Segmentation

1 code implementation18 Mar 2022 Ruihuang Li, Shuai Li, Chenhang He, Yabin Zhang, Xu Jia, Lei Zhang

One popular solution to this challenging task is self-training, which selects high-scoring predictions on target samples as pseudo labels for training.

Semantic Segmentation

Beyond a Video Frame Interpolator: A Space Decoupled Learning Approach to Continuous Image Transition

1 code implementation18 Mar 2022 Tao Yang, Peiran Ren, Xuansong Xie, Xiansheng Hua, Lei Zhang

Most of the existing deep learning based VFI methods adopt off-the-shelf optical flow algorithms to estimate the bidirectional flows and interpolate the missing frames accordingly.

Frame Image Generation +4

A Dual Weighting Label Assignment Scheme for Object Detection

1 code implementation18 Mar 2022 Shuai Li, Chenhang He, Ruihuang Li, Lei Zhang

Existing LA methods mostly focus on the design of pos weighting function, while the neg weight is directly derived from the pos weight.

Object Detection POS

Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution

1 code implementation17 Mar 2022 Jie Liang, Hui Zeng, Lei Zhang

In this paper, we demonstrate that it is possible to train a GAN-based SISR model which can stably generate perceptually realistic details while inhibiting visual artifacts.

Image Super-Resolution

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution

1 code implementation17 Mar 2022 jianqi ma, Zhetong Liang, Lei Zhang

The semantics of the text are firstly extracted by a text recognition module as text prior information.

Image Super-Resolution SSIM

Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization

1 code implementation15 Mar 2022 Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, Lei Zhang

In this work, we, for the first time to our best knowledge, propose to perform Exact Feature Distribution Matching (EFDM) by exactly matching the empirical Cumulative Distribution Functions (eCDFs) of image features, which could be implemented by applying the Exact Histogram Matching (EHM) in the image feature space.

Domain Generalization Style Transfer

Efficient Long-Range Attention Network for Image Super-resolution

1 code implementation13 Mar 2022 Xindong Zhang, Hui Zeng, Shi Guo, Lei Zhang

A highly efficient long-range attention block (ELAB) is then built by simply cascading two shift-conv with a GMSA module, which is further accelerated by using a shared attention mechanism.

Image Super-Resolution

One-stage Video Instance Segmentation: From Frame-in Frame-out to Clip-in Clip-out

1 code implementation12 Mar 2022 Minghan Li, Lei Zhang

Based on the fact that adjacent frames in a short clip are highly coherent in content, we propose to extend the one-stage FiFo framework to a clip-in clip-out (CiCo) one, which performs VIS clip by clip.

Frame Instance Segmentation +2

Unfolded Deep Kernel Estimation for Blind Image Super-resolution

1 code implementation10 Mar 2022 Hongyi Zheng, Hongwei Yong, Lei Zhang

Nonetheless, the existing deep unfolding methods cannot explicitly solve the data term of the unfolding objective function, limiting their capability in blur kernel estimation.

Image Super-Resolution

DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

2 code implementations7 Mar 2022 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni, Heung-Yeung Shum

Compared to other models on the leaderboard, DINO significantly reduces its model size and pre-training data size while achieving better results.

 Ranked #1 on 14 on DDB14

14 Object Detection

Vision-Language Intelligence: Tasks, Representation Learning, and Large Models

no code implementations3 Mar 2022 Feng Li, Hao Zhang, Yi-Fan Zhang, Shilong Liu, Jian Guo, Lionel M. Ni, Pengchuan Zhang, Lei Zhang

This survey is inspired by the remarkable progress in both computer vision and natural language processing, and recent trends shifting from single modality processing to multiple modality comprehension.

Few-Shot Learning Representation Learning

DN-DETR: Accelerate DETR Training by Introducing Query DeNoising

2 code implementations2 Mar 2022 Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M. Ni, Lei Zhang

Our method is universal and can be easily plugged into any DETR-like methods by adding dozens of lines of code to achieve a remarkable improvement.

Object Detection

BP-Triplet Net for Unsupervised Domain Adaptation: A Bayesian Perspective

no code implementations19 Feb 2022 Shanshan Wang, Lei Zhang, Pichao Wang

In our work, considering the different importance of pair-wise samples for both feature learning and domain alignment, we deduce our BP-Triplet loss for effective UDA from the perspective of Bayesian learning.

Metric Learning Unsupervised Domain Adaptation

Winograd Convolution: A Perspective from Fault Tolerance

no code implementations17 Feb 2022 Xinghua Xue, Haitong Huang, Cheng Liu, Ying Wang, Tao Luo, Lei Zhang

Winograd convolution is originally proposed to reduce the computing overhead by converting multiplication in neural network (NN) with addition via linear transformation.

Adversarial Examples for Good: Adversarial Examples Guided Imbalanced Learning

no code implementations28 Jan 2022 Jie Zhang, Lei Zhang, Gang Li, Chao Wu

Adversarial examples are inputs for machine learning models that have been designed by attackers to cause the model to make mistakes.

DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

1 code implementation ICLR 2022 Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, Lei Zhang

We present in this paper a novel query formulation using dynamic anchor boxes for DETR (DEtection TRansformer) and offer a deeper understanding of the role of queries in DETR.

Object Detection

Online Multi-Object Tracking with Unsupervised Re-Identification Learning and Occlusion Estimation

no code implementations4 Jan 2022 Qiankun Liu, Dongdong Chen, Qi Chu, Lu Yuan, Bin Liu, Lei Zhang, Nenghai Yu

In addition, such practice of re-identification still can not track those highly occluded objects when they are missed by the detector.

Ranked #6 on Multi-Object Tracking on MOT16 (using extra training data)

Multi-Object Tracking Occlusion Estimation +1

DeePN$^2$: A deep learning-based non-Newtonian hydrodynamic model

no code implementations29 Dec 2021 Lidong Fang, Pei Ge, Lei Zhang, Weinan E, Huan Lei

A long standing problem in the modeling of non-Newtonian hydrodynamics of polymeric flows is the availability of reliable and interpretable hydrodynamic models that faithfully encode the underlying micro-scale polymer dynamics.

CausalMTA: Eliminating the User Confounding Bias for Causal Multi-touch Attribution

no code implementations21 Dec 2021 Di Yao, Chang Gong, Lei Zhang, Sheng Chen, Jingping Bi

Existing methods first train a model to predict the conversion probability of the advertisement journeys with historical data and calculate the attribution of each touchpoint using counterfactual predictions.

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

1 code implementation15 Dec 2021 Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jianke Zhu, Lei Zhang

Though deep learning-based object detection methods have achieved promising results on the conventional datasets, it is still challenging to locate objects from the low-quality images captured in adverse weather conditions.

Image Enhancement Object Detection

Few-shot Multi-hop Question Answering over Knowledge Base

no code implementations14 Dec 2021 Meihao Fan, Lei Zhang, Siyao Xiao, Yuru Liang

In addition, in order to test the few-shot learning capability of our model, we ramdomly select 10% of the primary data to train our model, the result shows that our model can still achieves F1-score of 58. 54%, which verifies the capability of our model to process KBQA task and the advantage in few-shot Learning.

Few-Shot Learning Knowledge Base Question Answering +3

High-Resolution Programmable Scattering for Wireless Coverage Enhancement: An Indoor Field Trial Campaign

no code implementations10 Dec 2021 James Rains, Jalil ur Rehman Kazim, Anvar Tukmanov, Tie Jun Cui, Lei Zhang, Qammer H. Abbasi, Muhammad Ali Imran

This work explores the potential for reconfigurable intelligent surface (RIS) deployment to mitigate non-line of sight effects in an indoor wireless communications.

Subspace Decomposition based DNN algorithm for elliptic-type multi-scale PDEs

1 code implementation10 Dec 2021 Xi-An Li, Zhi-Qin John Xu, Lei Zhang

Numerical results show that the SD$^2$NN model is superior to existing models such as MscaleDNN.

Grounded Language-Image Pre-training

1 code implementation7 Dec 2021 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, Jianfeng Gao

The unification brings two benefits: 1) it allows GLIP to learn from both detection and grounding data to improve both tasks and bootstrap a good grounding model; 2) GLIP can leverage massive image-text pairs by generating grounding boxes in a self-training fashion, making the learned representation semantic-rich.

 Ranked #1 on Phrase Grounding on Flickr30k Entities Test (using extra training data)

Object Detection Phrase Grounding

Intelligent Reflecting Surface-induced Randomness for mmWave Key Generation

no code implementations31 Oct 2021 Shubo Yang, Han Han, Yihong Liu, Weisi Guo, Lei Zhang

When considering the IRS weights are continuous and discrete uniformly distributed, we find that the reflection channel variance is equal to the number of IRS elements.

Quantization

SVBRDF Recovery From a Single Image With Highlights using a Pretrained Generative Adversarial Network

no code implementations29 Oct 2021 Tao Wen, Beibei Wang, Lei Zhang, Jie Guo, Nicolas Holzschuch

For efficiency, we train the network in two stages: reusing a trained model to initialize the SVBRDFs and fine-tune it based on the input image.

Unsupervised Finetuning

no code implementations18 Oct 2021 Suichan Li, Dongdong Chen, Yinpeng Chen, Lu Yuan, Lei Zhang, Qi Chu, Bin Liu, Nenghai Yu

This problem is more challenging than the supervised counterpart, as the low data density in the small-scale target data is not friendly for unsupervised learning, leading to the damage of the pretrained representation and poor representation in the target domain.

Early Melanoma Diagnosis with Sequential Dermoscopic Images

no code implementations12 Oct 2021 Zhen Yu, Jennifer Nguyen, Toan D Nguyen, John Kelly, Catriona Mclean, Paul Bonnington, Lei Zhang, Victoria Mar, ZongYuan Ge

In this study, we propose a framework for automated early melanoma diagnosis using sequential dermoscopic images.

PWG-IDS: An Intrusion Detection Model for Solving Class Imbalance in IIoT Networks Using Generative Adversarial Networks

no code implementations6 Oct 2021 Lei Zhang, Shuaimin Jiang, Xiajiong Shen, Brij B. Gupta, Zhihong Tian

To address this imbalance, an intrusion detection system called pretraining Wasserstein generative adversarial network intrusion detection system (PWG-IDS) is proposed in this paper.

Network Intrusion Detection

Mutual Consistency Learning for Semi-supervised Medical Image Segmentation

2 code implementations21 Sep 2021 Yicheng Wu, ZongYuan Ge, Donghao Zhang, Minfeng Xu, Lei Zhang, Yong Xia, Jianfei Cai

In this way, we minimize the discrepancy of multiple outputs (i. e., the model uncertainty) during training and force the model to generate invariant results in such challenging regions, aiming at capturing more useful features.

Semantic Segmentation Semi-supervised Medical Image Segmentation

Layer-wise Customized Weak Segmentation Block and AIoU Loss for Accurate Object Detection

no code implementations25 Aug 2021 Keyang Wang, Lei Zhang, Wenli Song, Qinghai Lang, Lingyun Qin

The anchor-based detectors handle the problem of scale variation by building the feature pyramid and directly setting different scales of anchors on each cell in different layers.

Object Detection

Reconcile Prediction Consistency for Balanced Object Detection

no code implementations ICCV 2021 Keyang Wang, Lei Zhang

The Harmonic loss enables these two branches to supervise and promote each other during training, thereby producing consistent predictions with high co-occurrence of top classification and localization in the inference phase.

Classification Object Detection

Term Interrelations and Trends in Software Engineering

1 code implementation21 Aug 2021 Janusan Baskararajah, Lei Zhang, Andriy Miranskyy

The Software Engineering (SE) community is prolific, making it challenging for experts to keep up with the flood of new papers and for neophytes to enter the field.

Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting

1 code implementation ICCV 2021 Binghui Chen, Zhaoyi Yan, Ke Li, Pengyu Li, Biao Wang, WangMeng Zuo, Lei Zhang

In crowd counting, due to the problem of laborious labelling, it is perceived intractability of collecting a new large-scale dataset which has plentiful images with large diversity in density, scene, etc.

Crowd Counting

MicroNet: Improving Image Recognition with Extremely Low FLOPs

1 code implementation ICCV 2021 Yunsheng Li, Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Lu Yuan, Zicheng Liu, Lei Zhang, Nuno Vasconcelos

This paper aims at addressing the problem of substantial performance degradation at extremely low computational cost (e. g. 5M FLOPs on ImageNet classification).

Ultralow complexity long short-term memory network for fiber nonlinearity mitigation in coherent optical communication systems

no code implementations12 Aug 2021 Hao Ming, Xinyu Chen, Xiansong Fang, Lei Zhang, Chenjia Li, Fan Zhang

In this paper, we propose a center-oriented long short-term memory network (Co-LSTM) incorporating a simplified mode with a recycling mechanism in the equalization operation, which can mitigate fiber nonlinearity in coherent optical communication systems with ultralow complexity.

On the Robustness of Domain Adaption to Adversarial Attacks

no code implementations4 Aug 2021 Liyuan Zhang, YuHang Zhou, Lei Zhang

State-of-the-art deep neural networks (DNNs) have been proved to have excellent performance on unsupervised domain adaption (UDA).

Adversarial Attack Unsupervised Domain Adaptation

MedAI at SemEval-2021 Task 10: Negation-aware Pre-training for Source-free Negation Detection Domain Adaptation

no code implementations SEMEVAL 2021 Jinquan Sun, Qi Zhang, Yu Wang, Lei Zhang

Due to the increasing concerns for data privacy, source-free unsupervised domain adaptation attracts more and more research attention, where only a trained source model is assumed to be available, while the labeled source data remain private.

Negation Detection Unsupervised Domain Adaptation

Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth

no code implementations28 Jul 2021 Chenhang He, Jianqiang Huang, Xian-Sheng Hua, Lei Zhang

Current geometry-based monocular 3D object detection models can efficiently detect objects by leveraging perspective geometry, but their performance is limited due to the absence of accurate depth information.

Depth Estimation Monocular 3D Object Detection

Image Scene Graph Generation (SGG) Benchmark

1 code implementation27 Jul 2021 Xiaotian Han, Jianwei Yang, Houdong Hu, Lei Zhang, Jianfeng Gao, Pengchuan Zhang

There is a surge of interest in image scene graph generation (object, attribute and relationship detection) due to the need of building fine-grained image understanding models that go beyond object detection.

Graph Generation Object Detection +2

Improve Unsupervised Pretraining for Few-label Transfer

no code implementations ICCV 2021 Suichan Li, Dongdong Chen, Yinpeng Chen, Lu Yuan, Lei Zhang, Qi Chu, Bin Liu, Nenghai Yu

Unsupervised pretraining has achieved great success and many recent works have shown unsupervised pretraining can achieve comparable or even slightly better transfer performance than supervised pretraining on downstream target datasets.

Contrastive Learning

Query2Label: A Simple Transformer Way to Multi-Label Classification

1 code implementation22 Jul 2021 Shilong Liu, Lei Zhang, Xiao Yang, Hang Su, Jun Zhu

The use of Transformer is rooted in the need of extracting local discriminative features adaptively for different labels, which is a strongly desired property due to the existence of multiple objects in one image.

Classification Multi-Label Classification

Conditional Directed Graph Convolution for 3D Human Pose Estimation

1 code implementation16 Jul 2021 WenBo Hu, Changgong Zhang, Fangneng Zhan, Lei Zhang, Tien-Tsin Wong

Based on this representation, we further propose a spatial-temporal conditional directed graph convolution to leverage varying non-local dependence for different poses by conditioning the graph topology on input poses.

3D Human Pose Estimation

Sliding Spectrum Decomposition for Diversified Recommendation

no code implementations12 Jul 2021 Yanhua Huang, Weikun Wang, Lei Zhang, Ruiwen Xu

Content feed, a type of product that recommends a sequence of items for users to browse and engage with, has gained tremendous popularity among social media platforms.

Recommendation Systems Time Series +1

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

1 code implementation2 Jul 2021 Zongsheng Yue, Qian Zhao, Jianwen Xie, Lei Zhang, Deyu Meng, Kwan-Yee K. Wong

To address the above issues, this paper proposes a model-based blind SISR method under the probabilistic framework, which elaborately models image degradation from the perspectives of noise and blur kernel.

Image Super-Resolution

Text Prior Guided Scene Text Image Super-resolution

1 code implementation29 Jun 2021 jianqi ma, Shi Guo, Lei Zhang

Our experiments on the benchmark TextZoom dataset show that TPGSR can not only effectively improve the visual quality of scene text images, but also significantly improve the text recognition accuracy over existing STISR methods.

Image Super-Resolution

VirFace: Enhancing Face Recognition via Unlabeled Shallow Data

no code implementations CVPR 2021 Wenyu Li, Tianchu Guo, Pengyu Li, Binghui Chen, Biao Wang, WangMeng Zuo, Lei Zhang

In this paper, we propose a novel face recognition method, named VirFace, to effectively apply the unlabeled shallow data for face recognition.

Face Recognition

Interactive Self-Training With Mean Teachers for Semi-Supervised Object Detection

no code implementations CVPR 2021 Qize Yang, Xihan Wei, Biao Wang, Xian-Sheng Hua, Lei Zhang

Specifically, to alleviate the instability among the detection results in different iterations, we propose using nonmaximum suppression to fuse the detection results from different iterations.

Object Detection Semi-Supervised Object Detection

Deep Convolutional Dictionary Learning for Image Denoising

1 code implementation CVPR 2021 Hongyi Zheng, Hongwei Yong, Lei Zhang

Inspired by the great success of deep neural networks (DNNs), many unfolding methods have been proposed to integrate traditional image modeling techniques, such as dictionary learning (DicL) and sparse coding, into DNNs for image restoration.

Dictionary Learning Image Denoising +2

Virtual Fully-Connected Layer: Training a Large-Scale Face Recognition Dataset With Limited Computational Resources

1 code implementation CVPR 2021 Pengyu Li, Biao Wang, Lei Zhang

This is because the classification paradigm needs to train a fully connected layer as the category classifier, and its parameters will be in the hundreds of millions if the training dataset contains millions of identities.

Face Recognition Metric Learning

Gradual Domain Adaptation via Self-Training of Auxiliary Models

no code implementations18 Jun 2021 Yabin Zhang, Bin Deng, Kui Jia, Lei Zhang

Domain adaptation becomes more challenging with increasing gaps between source and target domains.

Domain Adaptation

Domain Adaptive SiamRPN++ for Object Tracking in the Wild

no code implementations15 Jun 2021 Zhongzhou Zhang, Lei Zhang

The SDA module aligns the feature representations of the tracking target's appearance to eliminate the semantic-level domain shift.

Domain Adaptation Object Detection +3

Chasing Sparsity in Vision Transformers: An End-to-End Exploration

1 code implementation NeurIPS 2021 Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

For example, our sparsified DeiT-Small at (5%, 50%) sparsity for (data, architecture), improves 0. 28% top-1 accuracy, and meanwhile enjoys 49. 32% FLOPs and 4. 40% running time savings.

Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners

no code implementations1 Jun 2021 Yabin Zhang, Haojian Zhang, Bin Deng, Shuai Li, Kui Jia, Lei Zhang

Especially, state-of-the-art SSL methods significantly outperform existing UDA methods on the challenging UDA benchmark of DomainNet, and state-of-the-art UDA methods could be further enhanced with SSL techniques.

Unsupervised Domain Adaptation

Unsupervised Part Segmentation through Disentangling Appearance and Shape

no code implementations CVPR 2021 Shilong Liu, Lei Zhang, Xiao Yang, Hang Su, Jun Zhu

We study the problem of unsupervised discovery and segmentation of object parts, which, as an intermediate local representation, are capable of finding intrinsic object structure and providing more explainable recognition results.

Disentanglement Semantic Segmentation

High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network

1 code implementation CVPR 2021 Jie Liang, Hui Zeng, Lei Zhang

Existing image-to-image translation (I2IT) methods are either constrained to low-resolution images or long inference time due to their heavy computational burden on the convolution of high-resolution feature maps.

Image Enhancement Image-to-Image Translation +2

PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency

1 code implementation CVPR 2021 Jie Liang, Hui Zeng, Miaomiao Cui, Xuansong Xie, Lei Zhang

HRP requires that more attention should be paid to human regions, while GLC requires that a group of portrait photos should be retouched to a consistent tone.

Photo Retouching

HiDeNN-PGD: reduced-order hierarchical deep learning neural networks

no code implementations13 May 2021 Lei Zhang, Ye Lu, Shaoqiang Tang, Wing Kam Liu

This paper presents a proper generalized decomposition (PGD) based reduced-order model of hierarchical deep-learning neural networks (HiDeNN).

GAN Prior Embedded Network for Blind Face Restoration in the Wild

2 code implementations CVPR 2021 Tao Yang, Peiran Ren, Xuansong Xie, Lei Zhang

The proposed GAN prior embedded network (GPEN) is easy-to-implement, and it can generate visually photo-realistic results.

Blind Face Restoration Image Generation

Estimation of 3D Human Pose Using Prior Knowledge

no code implementations9 May 2021 Shu Chen, Lei Zhang, Beiji Zou

Estimating three-dimensional human poses from the positions of two-dimensional joints has shown promising results. However, using two-dimensional joint coordinates as input loses more information than image-based approaches and results in ambiguity. In order to overcome this problem, we combine bone length and camera parameters with two-dimensional joint coordinates for input. This combination is more discriminative than the two-dimensional joint coordinates in that it can improve the accuracy of the model's prediction depth and alleviate the ambiguity that comes from projecting three-dimensional coordinates into two-dimensional space.

Pose Estimation

SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

1 code implementation ICCV 2021 Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, Lei Zhang

To this end, we propose to learn implicit surface reconstruction by sign-agnostic optimization of convolutional occupancy networks, to simultaneously achieve advanced scalability to large-scale scenes, generality to novel shapes, and applicability to raw scans in a unified framework.

Surface Reconstruction

CAT: Cross-Attention Transformer for One-Shot Object Detection

no code implementations30 Apr 2021 Weidong Lin, Yuyan Deng, Yang Gao, Ning Wang, Jinghao Zhou, Lingqiao Liu, Lei Zhang, Peng Wang

Given a query patch from a novel class, one-shot object detection aims to detect all instances of that class in a target image through the semantic similarity comparison.

One-Shot Object Detection Semantic Similarity +1

Discover the Hidden Attack Path in Multi-domain Cyberspace Based on Reinforcement Learning

no code implementations15 Apr 2021 Lei Zhang, Wei Bai, Wei Li, Shiming Xia, Qibin Zheng

To achieve these results, we pose discovering attack paths as a Reinforcement Learning (RL) problem and train an agent to discover multi-domain cyberspace attack paths.

reinforcement-learning

Smart and Secure CAV Networks Empowered by AI-Enabled Blockchain: The Next Frontier for Intelligent Safe Driving Assessment

no code implementations9 Apr 2021 Le Xia, Yao Sun, Rafiq Swash, Lina Mohjazi, Lei Zhang, Muhammad Ali Imran

Securing safe driving for connected and autonomous vehicles (CAVs) continues to be a widespread concern, despite various sophisticated functions delivered by artificial intelligence for in-vehicle devices.

Autonomous Driving

Spatial Feature Calibration and Temporal Fusion for Effective One-stage Video Instance Segmentation

1 code implementation CVPR 2021 Minghan Li, Shuai Li, Lida Li, Lei Zhang

To further explore temporal correlation among video frames, we aggregate a temporal fusion module to infer instance masks from each frame to its adjacent frames, which helps our framework to handle challenging videos such as motion blur, partial occlusion and unusual object-to-camera poses.

Frame Instance Segmentation +2

DAP: Detection-Aware Pre-training with Weak Supervision

1 code implementation CVPR 2021 Yuanyi Zhong, JianFeng Wang, Lijuan Wang, Jian Peng, Yu-Xiong Wang, Lei Zhang

This paper presents a detection-aware pre-training (DAP) approach, which leverages only weakly-labeled classification-style datasets (e. g., ImageNet) for pre-training, but is specifically tailored to benefit object detection tasks.

Classification General Classification +3

Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

3 code implementations ICCV 2021 Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, Jianfeng Gao

This paper presents a new Vision Transformer (ViT) architecture Multi-Scale Vision Longformer, which significantly enhances the ViT of \cite{dosovitskiy2020image} for encoding high-resolution images using two techniques.

Image Classification Instance Segmentation +1

CvT: Introducing Convolutions to Vision Transformers

10 code implementations ICCV 2021 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang

We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs.

 Ranked #1 on Image Classification on Flowers-102 (using extra training data)

Image Classification

Contrastive Learning based Hybrid Networks for Long-Tailed Image Classification

no code implementations CVPR 2021 Peng Wang, Kai Han, Xiu-Shen Wei, Lei Zhang, Lei Wang

Learning discriminative image representations plays a vital role in long-tailed image classification because it can ease the classifier learning in imbalanced cases.

Classification Contrastive Learning +4

Dynamic Weighted Learning for Unsupervised Domain Adaptation

no code implementations CVPR 2021 Ni Xiao, Lei Zhang

These methods, however, ignore the interaction between domain alignment learning and class discrimination learning.

Unsupervised Domain Adaptation

Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle Re-Identification

no code implementations9 Mar 2021 Lu Yang, Hongbang Liu, Jinghao Zhou, Lingqiao Liu, Lei Zhang, Peng Wang, Yanning Zhang

Learning cross-view consistent feature representation is the key for accurate vehicle Re-identification (ReID), since the visual appearance of vehicles changes significantly under different viewpoints.

Vehicle Re-Identification

Low-Complexity Symbol Detection and Interference Cancellation for OTFS System

no code implementations 期刊 2021 Huiyang Qu, Guanghui Liu, Lei Zhang, Shan Wen, Graduate Student Member, and Muhammad Ali Imran, Senior Member, IEEE

Orthogonal time frequency space (OTFS) is a two-dimensional modulation scheme realized in the delay- Doppler domain, which targets the robust wireless transmissions in high-mobility environments.

Training a First-Order Theorem Prover from Synthetic Data

no code implementations5 Mar 2021 Vlad Firoiu, Eser Aygun, Ankit Anand, Zafarali Ahmed, Xavier Glorot, Laurent Orseau, Lei Zhang, Doina Precup, Shibl Mourad

A major challenge in applying machine learning to automated theorem proving is the scarcity of training data, which is a key ingredient in training successful deep learning models.

Automated Theorem Proving

Semi-supervised Left Atrium Segmentation with Mutual Consistency Training

3 code implementations4 Mar 2021 Yicheng Wu, Minfeng Xu, ZongYuan Ge, Jianfei Cai, Lei Zhang

Such mutual consistency encourages the two decoders to have consistent and low-entropy predictions and enables the model to gradually capture generalized features from these unlabeled challenging regions.

Left Atrium Segmentation Medical Image Segmentation +1

Generalized Rough Polyharmonic Splines for Multiscale PDEs with Rough Coefficients

no code implementations2 Mar 2021 Xinliang Liu, Lei Zhang, Shengxin Zhu

In this paper, we demonstrate the construction of generalized Rough Polyhamronic Splines (GRPS) within the Bayesian framework, in particular, for multiscale PDEs with rough coefficients.

Numerical Analysis Numerical Analysis

Dual MINE-based Neural Secure Communications under Gaussian Wiretap Channel

no code implementations25 Feb 2021 Jingjing Li, Zhuo Sun, Lei Zhang, Hongyu Zhu

The security constraints of this method is constructed only with the input and output signal samples of the legal and eavesdropper channels and benefit that training the encoder is completely independent of the decoder.

Measurement of the absolute branching fractions for purely leptonic $D_s^+$ decays

no code implementations23 Feb 2021 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G. Y. Hou, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, H. F. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, A. Q. Zhang, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Constraining our measurement to the Standard Model expectation of lepton universality ($R=9. 75$), we find the more precise results $\cal B(D_s^+\to \tau^+\nu_\tau) = (5. 22\pm0. 10\pm 0. 14)\times10^{-2}$ and $A_{\it CP}(\tau^\pm\nu_\tau) = (-0. 1\pm1. 9\pm1. 0)\%$.

High Energy Physics - Experiment

Cross section measurement of $e^+e^- \to p\bar{p}η$ and $e^+e^- \to p\bar{p}ω$ at center-of-mass energies between 3.773 GeV and 4.6 GeV

no code implementations8 Feb 2021 M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N. Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S. F. Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Based on $14. 7~\textrm{fb}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at 17 different center-of-mass energies between $3. 7730~\textrm{GeV}$ and $4. 5995~\textrm{GeV}$, Born cross sections of the two processes $e^+e^- \to p\bar{p}\eta$ and $e^+e^- \to p\bar{p}\omega$ are measured for the first time.

High Energy Physics - Experiment

Resource Allocation for Mixed Numerology NOMA

no code implementations1 Feb 2021 Stephen McWade, Mark F. Flanagan, Juquan Mao, Lei Zhang, Arman Farhang

Non-orthogonal multiple access (NOMA) techniques can potentially be used to accommodate users with different numerologies while also gaining the performance benefits associated with NOMA.

Fairness

BE-RAN: Blockchain-enabled Open RAN with Decentralized Identity Management and Privacy-Preserving Communication

no code implementations26 Jan 2021 Hao Xu, Lei Zhang, Elaine Sun, Chih-Lin I

In this paper, Blockchain-enabled Radio Access Networks (BE-RAN) is proposed as a novel decentralized RAN architecture to facilitate enhanced security and privacy on identification and authentication.

Cryptography and Security Distributed, Parallel, and Cluster Computing Networking and Internet Architecture

Solution landscapes of the diblock copolymer-homopolymer model under two-dimensional confinement

no code implementations26 Jan 2021 Zhen Xu, Yucen Han, Jianyuan Yin, Bing Yu, Yasumasa Nishiura, Lei Zhang

We investigate the solution landscapes of the confined diblock copolymer and homopolymer in two-dimensional domain by using the extended Ohta--Kawasaki model.

Soft Condensed Matter Computational Physics

Joint Denoising and Demosaicking with Green Channel Prior for Real-world Burst Images

1 code implementation25 Jan 2021 Shi Guo, Zhetong Liang, Lei Zhang

Considering the fact that the green channel has twice the sampling rate and better quality than the red and blue channels in CFA raw data, we propose to use this green channel prior (GCP) to build a GCP-Net for the JDD-B task.

Demosaicking Denoising

Registration-based model reduction in complex two-dimensional geometries

no code implementations25 Jan 2021 Tommaso Taddei, Lei Zhang

We present a general -- i. e., independent of the underlying equation -- registration procedure for parameterized model order reduction.

Numerical Analysis Numerical Analysis 65N30, 41A45, 35J20, 90C26 G.1.8

Snapshot Hyperspectral Imaging Based on Weighted High-order Singular Value Regularization

no code implementations22 Jan 2021 Niankai Cheng, Hua Huang, Lei Zhang, Lizhi Wang

In this paper, we propose an effective high-order tensor optimization based method to boost the reconstruction fidelity for snapshot hyperspectral imaging.

On Liouville systems at critical parameters, Part 2: Multiple bubbles

no code implementations20 Jan 2021 Hsin-Yuan Huang, Lei Zhang

In this paper, we continue to consider the generalized Liouville system: $$ \Delta_g u_i+\sum_{j=1}^n a_{ij}\rho_j\left(\frac{h_j e^{u_j}}{\int h_j e^{u_j}}- {1} \right)=0\quad\text{in \,}M,\quad i\in I=\{1,\cdots, n\}, $$ where $(M, g)$ is a Riemann surface $M$ with volume $1$, $h_1,.., h_n$ are positive smooth functions and $\rho_j\in \mathbb R^+$($j\in I$).

Analysis of PDEs Mathematical Physics Mathematical Physics 35J60, 35J55

Hybrid Trilinear and Bilinear Programming for Aligning Partially Overlapping Point Sets

no code implementations19 Jan 2021 Wei Lian, WangMeng Zuo, Lei Zhang

Alignment methods which can handle partially overlapping point sets and are invariant to the corresponding transformations are desirable in computer vision, with applications such as providing initial transformation configuration for local search based methods like ICP.

Unsupervised Domain Adaptation of Black-Box Source Models

1 code implementation8 Jan 2021 Haojian Zhang, Yabin Zhang, Kui Jia, Lei Zhang

Unsupervised domain adaptation (UDA) aims to learn models for a target domain of unlabeled data by transferring knowledge from a labeled source domain.

Learning with noisy labels Unsupervised Domain Adaptation

Reinforcement Learning for Flexibility Design Problems

no code implementations2 Jan 2021 Yehua Wei, Lei Zhang, Ruiyi Zhang, Shijing Si, Hao Zhang, Lawrence Carin

Flexibility design problems are a class of problems that appear in strategic decision-making across industries, where the objective is to design a ($e. g.$, manufacturing) network that affords flexibility and adaptivity.

Decision Making reinforcement-learning

VinVL: Revisiting Visual Representations in Vision-Language Models

6 code implementations CVPR 2021 Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, Jianfeng Gao

In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model \oscar \cite{li2020oscar}, and utilize an improved approach \short\ to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks.

Image Captioning Object Detection

Dynamic DETR: End-to-End Object Detection With Dynamic Attention

no code implementations ICCV 2021 Xiyang Dai, Yinpeng Chen, Jianwei Yang, Pengchuan Zhang, Lu Yuan, Lei Zhang

To mitigate the second limitation of learning difficulty, we introduce a dynamic decoder by replacing the cross-attention module with a ROI-based dynamic attention in the Transformer decoder.

Object Detection

Real-World Video Super-Resolution: A Benchmark Dataset and a Decomposition Based Learning Scheme

1 code implementation ICCV 2021 Xi Yang, Wangmeng Xiang, Hui Zeng, Lei Zhang

Existing VSR methods are mostly trained and evaluated on synthetic datasets, where the LR videos are uniformly downsampled from their high-resolution (HR) counterparts by some simple operators (e. g., bicubic downsampling).

Video Super-Resolution

AC-VAE: Learning Semantic Representation with VAE for Adaptive Clustering

no code implementations1 Jan 2021 Xingyu Xie, Minjuan Zhu, Yan Wang, Lei Zhang

Experimental evaluations show that the proposed method outperforms state-of-the-art representation learning methods in terms of neighbor clustering accuracy.

Classification General Classification +2

Measurements of the center-of-mass energies of $e^{+}e^{-}$ collisions at BESIII

no code implementations29 Dec 2020 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, N Hüsken, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff,