1 code implementation • NeurIPS 2023 • Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Klaus-Robert Müller, Paolo Stornati, Pan Kessel, Shinichi Nakajima
In this paper, we propose a novel and powerful method to harness Bayesian optimization for Variational Quantum Eigensolvers (VQEs) -- a hybrid quantum-classical protocol used to approximate the ground state of a quantum Hamiltonian.
no code implementations • 10 Feb 2022 • Denis Boyda, Salvatore Calì, Sam Foreman, Lena Funcke, Daniel C. Hackett, Yin Lin, Gert Aarts, Andrei Alexandru, Xiao-Yong Jin, Biagio Lucini, Phiala E. Shanahan
There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies.
no code implementations • 22 Nov 2021 • Kim A. Nicoli, Christopher Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Pan Kessel, Shinichi Nakajima, Paolo Stornati
Crucially, these models allow for the direct estimation of the free energy at a given point in parameter space.
no code implementations • 26 Feb 2021 • Christiane S. Lorenz, Lena Funcke, Matthias Löffler, Erminia Calabrese
We reconstruct the neutrino mass as a function of redshift, z, from current cosmological data using both standard binned priors and linear spline priors with variable knots.
Cosmology and Nongalactic Astrophysics High Energy Physics - Phenomenology
no code implementations • 14 Jul 2020 • Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Pan Kessel, Shinichi Nakajima, Paolo Stornati
In this work, we demonstrate that applying deep generative machine learning models for lattice field theory is a promising route for solving problems where Markov Chain Monte Carlo (MCMC) methods are problematic.
1 code implementation • 3 May 2019 • Lena Funcke, Georg Raffelt, Edoardo Vitagliano
Neutrinos may acquire small Dirac or Majorana masses by new low-energy physics in terms of the chiral gravitational anomaly, as proposed by Dvali and Funcke (2016).
High Energy Physics - Phenomenology