Search Results for author: Leonard Hasenclever

Found 32 papers, 5 papers with code

CoMic: Co-Training and Mimicry for Reusable Skills

no code implementations ICML 2020 Leonard Hasenclever, Fabio Pardo, Raia Hadsell, Nicolas Heess, Josh Merel

Finally we show that it is possible to interleave the motion capture tracking with training on complementary tasks, enriching the resulting skill space, and enabling the reuse of skills not well covered by the motion capture data such as getting up from the ground or catching a ball.

Continuous Control Reinforcement Learning (RL)

Diffusion Augmented Agents: A Framework for Efficient Exploration and Transfer Learning

no code implementations30 Jul 2024 Norman Di Palo, Leonard Hasenclever, Jan Humplik, Arunkumar Byravan

We introduce Diffusion Augmented Agents (DAAG), a novel framework that leverages large language models, vision language models, and diffusion models to improve sample efficiency and transfer learning in reinforcement learning for embodied agents.

Efficient Exploration Language Modelling +2

Towards A Unified Agent with Foundation Models

no code implementations18 Jul 2023 Norman Di Palo, Arunkumar Byravan, Leonard Hasenclever, Markus Wulfmeier, Nicolas Heess, Martin Riedmiller

Language Models and Vision Language Models have recently demonstrated unprecedented capabilities in terms of understanding human intentions, reasoning, scene understanding, and planning-like behaviour, in text form, among many others.

Efficient Exploration Reinforcement Learning (RL) +2

Language to Rewards for Robotic Skill Synthesis

no code implementations14 Jun 2023 Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, Fei Xia

However, since low-level robot actions are hardware-dependent and underrepresented in LLM training corpora, existing efforts in applying LLMs to robotics have largely treated LLMs as semantic planners or relied on human-engineered control primitives to interface with the robot.

In-Context Learning Logical Reasoning

Leveraging Jumpy Models for Planning and Fast Learning in Robotic Domains

no code implementations24 Feb 2023 Jingwei Zhang, Jost Tobias Springenberg, Arunkumar Byravan, Leonard Hasenclever, Abbas Abdolmaleki, Dushyant Rao, Nicolas Heess, Martin Riedmiller

We conduct a set of experiments in the RGB-stacking environment, showing that planning with the learned skills and the associated model can enable zero-shot generalization to new tasks, and can further speed up training of policies via reinforcement learning.

reinforcement-learning Reinforcement Learning (RL) +1

NeRF2Real: Sim2real Transfer of Vision-guided Bipedal Motion Skills using Neural Radiance Fields

no code implementations10 Oct 2022 Arunkumar Byravan, Jan Humplik, Leonard Hasenclever, Arthur Brussee, Francesco Nori, Tuomas Haarnoja, Ben Moran, Steven Bohez, Fereshteh Sadeghi, Bojan Vujatovic, Nicolas Heess

A simulation is then created using the rendering engine in a physics simulator which computes contact dynamics from the static scene geometry (estimated from the NeRF volume density) and the dynamic objects' geometry and physical properties (assumed known).

Novel View Synthesis

Learning Transferable Motor Skills with Hierarchical Latent Mixture Policies

no code implementations ICLR 2022 Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli, Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas Heess, Raia Hadsell

We demonstrate in manipulation domains that the method can effectively cluster offline data into distinct, executable behaviours, while retaining the flexibility of a continuous latent variable model.

Learning Dynamics Models for Model Predictive Agents

no code implementations29 Sep 2021 Michael Lutter, Leonard Hasenclever, Arunkumar Byravan, Gabriel Dulac-Arnold, Piotr Trochim, Nicolas Heess, Josh Merel, Yuval Tassa

This paper sets out to disambiguate the role of different design choices for learning dynamics models, by comparing their performance to planning with a ground-truth model -- the simulator.

Model-based Reinforcement Learning

From Motor Control to Team Play in Simulated Humanoid Football

1 code implementation25 May 2021 SiQi Liu, Guy Lever, Zhe Wang, Josh Merel, S. M. Ali Eslami, Daniel Hennes, Wojciech M. Czarnecki, Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, Noah Y. Siegel, Leonard Hasenclever, Luke Marris, Saran Tunyasuvunakool, H. Francis Song, Markus Wulfmeier, Paul Muller, Tuomas Haarnoja, Brendan D. Tracey, Karl Tuyls, Thore Graepel, Nicolas Heess

In a sequence of stages, players first learn to control a fully articulated body to perform realistic, human-like movements such as running and turning; they then acquire mid-level football skills such as dribbling and shooting; finally, they develop awareness of others and play as a team, bridging the gap between low-level motor control at a timescale of milliseconds, and coordinated goal-directed behaviour as a team at the timescale of tens of seconds.

Imitation Learning Multi-agent Reinforcement Learning +1

Behavior Priors for Efficient Reinforcement Learning

no code implementations27 Oct 2020 Dhruva Tirumala, Alexandre Galashov, Hyeonwoo Noh, Leonard Hasenclever, Razvan Pascanu, Jonathan Schwarz, Guillaume Desjardins, Wojciech Marian Czarnecki, Arun Ahuja, Yee Whye Teh, Nicolas Heess

In this work we consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors that capture the common movement and interaction patterns that are shared across a set of related tasks or contexts.

Continuous Control Hierarchical Reinforcement Learning +3

Importance Weighted Policy Learning and Adaptation

no code implementations10 Sep 2020 Alexandre Galashov, Jakub Sygnowski, Guillaume Desjardins, Jan Humplik, Leonard Hasenclever, Rae Jeong, Yee Whye Teh, Nicolas Heess

The ability to exploit prior experience to solve novel problems rapidly is a hallmark of biological learning systems and of great practical importance for artificial ones.

Meta Reinforcement Learning reinforcement-learning +1

Catch & Carry: Reusable Neural Controllers for Vision-Guided Whole-Body Tasks

no code implementations15 Nov 2019 Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg Wayne, Nicolas Heess

We address the longstanding challenge of producing flexible, realistic humanoid character controllers that can perform diverse whole-body tasks involving object interactions.

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

no code implementations18 Mar 2019 Dhruva Tirumala, Hyeonwoo Noh, Alexandre Galashov, Leonard Hasenclever, Arun Ahuja, Greg Wayne, Razvan Pascanu, Yee Whye Teh, Nicolas Heess

As reinforcement learning agents are tasked with solving more challenging and diverse tasks, the ability to incorporate prior knowledge into the learning system and to exploit reusable structure in solution space is likely to become increasingly important.

Continuous Control reinforcement-learning +1

Neural probabilistic motor primitives for humanoid control

no code implementations ICLR 2019 Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne, Yee Whye Teh, Nicolas Heess

We focus on the problem of learning a single motor module that can flexibly express a range of behaviors for the control of high-dimensional physically simulated humanoids.

Humanoid Control

Mix & Match - Agent Curricula for Reinforcement Learning

no code implementations ICML 2018 Wojciech Czarnecki, Siddhant Jayakumar, Max Jaderberg, Leonard Hasenclever, Yee Whye Teh, Nicolas Heess, Simon Osindero, Razvan Pascanu

We introduce Mix and match (M&M) – a training framework designed to facilitate rapid and effective learning in RL agents that would be too slow or too challenging to train otherwise. The key innovation is a procedure that allows us to automatically form a curriculum over agents.

reinforcement-learning Reinforcement Learning (RL)

Relativistic Monte Carlo

no code implementations14 Sep 2016 Xiaoyu Lu, Valerio Perrone, Leonard Hasenclever, Yee Whye Teh, Sebastian J. Vollmer

Based on this, we develop relativistic stochastic gradient descent by taking the zero-temperature limit of relativistic stochastic gradient Hamiltonian Monte Carlo.

Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server

no code implementations31 Dec 2015 Leonard Hasenclever, Stefan Webb, Thibaut Lienart, Sebastian Vollmer, Balaji Lakshminarayanan, Charles Blundell, Yee Whye Teh

The posterior server allows scalable and robust Bayesian learning in cases where a data set is stored in a distributed manner across a cluster, with each compute node containing a disjoint subset of data.

Variational Inference

Cannot find the paper you are looking for? You can Submit a new open access paper.