no code implementations • 17 Feb 2023 • Yan Zhao, Jincen Wang, Yuan Zong, Wenming Zheng, Hailun Lian, Li Zhao
In this paper, we propose a novel deep transfer learning method called deep implicit distribution alignment networks (DIDAN) to deal with cross-corpus speech emotion recognition (SER) problem, in which the labeled training (source) and unlabeled testing (target) speech signals come from different corpora.
no code implementations • 24 Dec 2022 • Xiaoyu Chen, Xiangming Zhu, Yufeng Zheng, Pushi Zhang, Li Zhao, Wenxue Cheng, Peng Cheng, Yongqiang Xiong, Tao Qin, Jianyu Chen, Tie-Yan Liu
One of the key challenges in deploying RL to real-world applications is to adapt to variations of unknown environment contexts, such as changing terrains in robotic tasks and fluctuated bandwidth in congestion control.
no code implementations • 15 Dec 2022 • Yuandong Ding, Mingxiao Feng, Guozi Liu, Wei Jiang, Chuheng Zhang, Li Zhao, Lei Song, Houqiang Li, Yan Jin, Jiang Bian
In this paper, we consider the inventory management (IM) problem where we need to make replenishment decisions for a large number of stock keeping units (SKUs) to balance their supply and demand.
1 code implementation • 5 Dec 2022 • Yuanying Cai, Chuheng Zhang, Li Zhao, Wei Shen, Xuyun Zhang, Lei Song, Jiang Bian, Tao Qin, TieYan Liu
There are two challenges for this setting: 1) The optimal trade-off between optimizing the RL signal and the behavior cloning (BC) signal changes on different states due to the variation of the action coverage induced by different behavior policies.
no code implementations • 18 Jul 2022 • Guoqing Liu, Mengzhang Cai, Li Zhao, Tao Qin, Adrian Brown, Jimmy Bischoff, Tie-Yan Liu
In this work, we propose using only screenshots/pixels as input for automated game testing and build a general game testing agent, Inspector, that can be easily applied to different games without deep integration with games.
1 code implementation • 25 May 2022 • Jiawei Huang, Li Zhao, Tao Qin, Wei Chen, Nan Jiang, Tie-Yan Liu
We propose a new learning framework that captures the tiered structure of many real-world user-interaction applications, where the users can be divided into two groups based on their different tolerance on exploration risks and should be treated separately.
no code implementations • 20 Apr 2022 • Kelly Payette, Hongwei Li, Priscille de Dumast, Roxane Licandro, Hui Ji, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Hao liu, Yuchen Pei, Lisheng Wang, Ying Peng, Juanying Xie, Huiquan Zhang, Guiming Dong, Hao Fu, Guotai Wang, ZunHyan Rieu, Donghyeon Kim, Hyun Gi Kim, Davood Karimi, Ali Gholipour, Helena R. Torres, Bruno Oliveira, João L. Vilaça, Yang Lin, Netanell Avisdris, Ori Ben-Zvi, Dafna Ben Bashat, Lucas Fidon, Michael Aertsen, Tom Vercauteren, Daniel Sobotka, Georg Langs, Mireia Alenyà, Maria Inmaculada Villanueva, Oscar Camara, Bella Specktor Fadida, Leo Joskowicz, Liao Weibin, Lv Yi, Li Xuesong, Moona Mazher, Abdul Qayyum, Domenec Puig, Hamza Kebiri, Zelin Zhang, Xinyi Xu, Dan Wu, Kuanlun Liao, Yixuan Wu, Jintai Chen, Yunzhi Xu, Li Zhao, Lana Vasung, Bjoern Menze, Meritxell Bach Cuadra, Andras Jakab
Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context.
no code implementations • ICLR 2022 • Jiawei Huang, Jinglin Chen, Li Zhao, Tao Qin, Nan Jiang, Tie-Yan Liu
Deployment efficiency is an important criterion for many real-world applications of reinforcement learning (RL).
3 code implementations • 23 Dec 2021 • Shuohuan Wang, Yu Sun, Yang Xiang, Zhihua Wu, Siyu Ding, Weibao Gong, Shikun Feng, Junyuan Shang, Yanbin Zhao, Chao Pang, Jiaxiang Liu, Xuyi Chen, Yuxiang Lu, Weixin Liu, Xi Wang, Yangfan Bai, Qiuliang Chen, Li Zhao, Shiyong Li, Peng Sun, dianhai yu, Yanjun Ma, Hao Tian, Hua Wu, Tian Wu, Wei Zeng, Ge Li, Wen Gao, Haifeng Wang
A unified framework named ERNIE 3. 0 was recently proposed for pre-training large-scale knowledge enhanced models and trained a model with 10 billion parameters.
no code implementations • NeurIPS 2021 • Minghuan Liu, Hanye Zhao, Zhengyu Yang, Jian Shen, Weinan Zhang, Li Zhao, Tie-Yan Liu
However, IL is usually limited in the capability of the behavioral policy and tends to learn a mediocre behavior from the dataset collected by the mixture of policies.
1 code implementation • 3 Nov 2021 • Minghuan Liu, Hanye Zhao, Zhengyu Yang, Jian Shen, Weinan Zhang, Li Zhao, Tie-Yan Liu
However, IL is usually limited in the capability of the behavioral policy and tends to learn a mediocre behavior from the dataset collected by the mixture of policies.
1 code implementation • NeurIPS 2021 • Jongjin Park, Younggyo Seo, Chang Liu, Li Zhao, Tao Qin, Jinwoo Shin, Tie-Yan Liu
Behavioral cloning has proven to be effective for learning sequential decision-making policies from expert demonstrations.
no code implementations • NeurIPS 2021 • Pushi Zhang, Xiaoyu Chen, Li Zhao, Wei Xiong, Tao Qin, Tie-Yan Liu
To fully inherit the benefits of distributional RL and hybrid reward architectures, we introduce Multi-Dimensional Distributional DQN (MD3QN), which extends distributional RL to model the joint return distribution from multiple reward sources.
Distributional Reinforcement Learning
reinforcement-learning
+1
no code implementations • 29 Sep 2021 • Mingxiao Feng, Guozi Liu, Li Zhao, Lei Song, Jiang Bian, Tao Qin, Wengang Zhou, Houqiang Li, Tie-Yan Liu
We consider inventory management (IM) problem for a single store with a large number of SKUs (stock keeping units) in this paper, where we need to make replenishment decisions for each SKU to balance its supply and demand.
no code implementations • ACL 2021 • Xuepeng Wang, Li Zhao, Bing Liu, Tao Chen, Feng Zhang, Di Wang
In this paper, we propose a novel concept-based label embedding method that can explicitly represent the concept and model the sharing mechanism among classes for the hierarchical text classification.
no code implementations • ICLR 2021 • Guoqing Liu, Chuheng Zhang, Li Zhao, Tao Qin, Jinhua Zhu, Jian Li, Nenghai Yu, Tie-Yan Liu
Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL).
no code implementations • 4 Dec 2020 • Xiangyi Cui, Zhou Wang, Yonglin Ju, Xiuli Wang, Huaxuan Liu, Wenbo Ma, Jianglai Liu, Li Zhao, Xiangdong Ji, Shuaijie Li, Rui Yan, Haidong Sha, Peiyao Huang
An online cryogenic distillation system for the removal of krypton and radon from xenon was designed and constructed for PandaX-4T, a highly sensitive dark matter detection experiment.
Instrumentation and Detectors High Energy Physics - Experiment
no code implementations • NeurIPS 2020 • Zichuan Lin, Derek Yang, Li Zhao, Tao Qin, Guangwen Yang, Tie-Yan Liu
In this work, we propose a set of novel reward decomposition principles by constraining uniqueness and compactness of different state features/representations relevant to different sub-rewards.
no code implementations • 7 Nov 2020 • Jinming Liu, Ke Li, Baolin Song, Li Zhao
On the other hand, some methods based on deep learning also cannot get high accuracy due to problems such as the imbalance of databases.
no code implementations • 1 Sep 2020 • Zheng-Quan Cui, Zi-Chao Lin, Jun-Jie Wan, Yu-Xiao Liu, Li Zhao
At last, the effective potential of the Kaluza-Klein modes of the graviton is discussed for the two solved $f(R)$ models in higher dimensions.
High Energy Physics - Theory General Relativity and Quantum Cosmology
no code implementations • 4 Jul 2020 • Yue Sun, Kun Gao, Zhengwang Wu, Zhihao Lei, Ying WEI, Jun Ma, Xiaoping Yang, Xue Feng, Li Zhao, Trung Le Phan, Jitae Shin, Tao Zhong, Yu Zhang, Lequan Yu, Caizi Li, Ramesh Basnet, M. Omair Ahmad, M. N. S. Swamy, Wenao Ma, Qi Dou, Toan Duc Bui, Camilo Bermudez Noguera, Bennett Landman, Ian H. Gotlib, Kathryn L. Humphreys, Sarah Shultz, Longchuan Li, Sijie Niu, Weili Lin, Valerie Jewells, Gang Li, Dinggang Shen, Li Wang
Deep learning-based methods have achieved state-of-the-art performance; however, one of major limitations is that the learning-based methods may suffer from the multi-site issue, that is, the models trained on a dataset from one site may not be applicable to the datasets acquired from other sites with different imaging protocols/scanners.
no code implementations • 30 Mar 2020 • Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, Chao Wang, Ruihan Yang, Li Zhao, Tao Qin, Tie-Yan Liu, Hsiao-Wuen Hon
Artificial Intelligence (AI) has achieved great success in many domains, and game AI is widely regarded as its beachhead since the dawn of AI.
no code implementations • NeurIPS 2019 • Zichuan Lin, Li Zhao, Derek Yang, Tao Qin, Guangwen Yang, Tie-Yan Liu
Many reinforcement learning (RL) tasks have specific properties that can be leveraged to modify existing RL algorithms to adapt to those tasks and further improve performance, and a general class of such properties is the multiple reward channel.
6 code implementations • NeurIPS 2019 • Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, Tie-Yan Liu
The key challenge in practical distributional RL algorithms lies in how to parameterize estimated distributions so as to better approximate the true continuous distribution.
Ranked #3 on
Atari Games
on Atari 2600 Skiing
(using extra training data)
no code implementations • 25 Sep 2019 • Pushi Zhang, Li Zhao, Guoqing Liu, Jiang Bian, Minglie Huang, Tao Qin, Tie-Yan Liu
Most of existing advantage function estimation methods in reinforcement learning suffer from the problem of high variance, which scales unfavorably with the time horizon.
no code implementations • 25 Sep 2019 • Guoqing Liu, Li Zhao, Pushi Zhang, Jiang Bian, Tao Qin, Nenghai Yu, Tie-Yan Liu
One approach leverages demonstration data in a supervised manner, which is simple and direct, but can only provide supervision signal over those states seen in the demonstrations.
2 code implementations • 24 Aug 2018 • Jun Feng, Minlie Huang, Li Zhao, Yang Yang, Xiaoyan Zhu
In this paper, we propose a novel model for relation classification at the sentence level from noisy data.
no code implementations • NAACL 2018 • Fei Gao, Lijun Wu, Li Zhao, Tao Qin, Xue-Qi Cheng, Tie-Yan Liu
Recurrent neural networks have achieved state-of-the-art results in many artificial intelligence tasks, such as language modeling, neural machine translation, speech recognition and so on.
no code implementations • 25 Jul 2017 • Changbo Fu, Xiaopeng Zhou, Xun Chen, Yunhua Chen, Xiangyi Cui, Deqing Fang, Karl Giboni, Franco Giuliani, Ke Han, Xingtao Huang, Xiangdong Ji, Yonglin Ju, Siao Lei, Shaoli Li, Huaxuan Liu, Jianglai Liu, Yugang Ma, Yajun Mao, Xiangxiang Ren, Andi Tan, Hongwei Wang, Jimin Wang, Meng Wang, Qiuhong Wang, Siguang Wang, Xuming Wang, Zhou Wang, Shiyong Wu, Mengjiao Xiao, Pengwei Xie, Binbin Yan, Yong Yang, Jianfeng Yue, Hongguang Zhang, Tao Zhang, Li Zhao, Ning Zhou
We report new searches for the solar axions and galactic axion-like dark matter particles, using the first low-background data from PandaX-II experiment at China Jinping Underground Laboratory, corresponding to a total exposure of about $2. 7\times 10^4$ kg$\cdot$day.
High Energy Physics - Experiment Solar and Stellar Astrophysics High Energy Physics - Phenomenology
no code implementations • 20 Apr 2017 • Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jian-Huang Lai, Tie-Yan Liu
The goal of the adversary is to differentiate the translation result generated by the NMT model from that by human.
4 code implementations • 7 May 2013 • Peter Wittek, Shi Chao Gao, Ik Soo Lim, Li Zhao
Somoclu is a massively parallel tool for training self-organizing maps on large data sets written in C++.