Search Results for author: Liang Pang

Found 90 papers, 55 papers with code

Optimal Partial Transport Based Sentence Selection for Long-form Document Matching

1 code implementation COLING 2022 Weijie Yu, Liang Pang, Jun Xu, Bing Su, Zhenhua Dong, Ji-Rong Wen

Enjoying the partial transport properties of OPT, the selected key sentences can not only effectively enhance the matching accuracy, but also be explained as the rationales for the matching results.

Form Sentence

LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph

no code implementations4 Apr 2025 Tu Ao, Yanhua Yu, Yuling Wang, Yang Deng, Zirui Guo, Liang Pang, Pinghui Wang, Tat-Seng Chua, Xiao Zhang, Zhen Cai

Next, through a Transformer-based Knowledge Adapter, it finely extracts and integrates factual and structural information from the KG, then maps this information to the LLM's token embedding space, creating an LLM-friendly prompt to be used by the LLM for the final reasoning.

Knowledge Graphs Language Modeling +2

Perplexity Trap: PLM-Based Retrievers Overrate Low Perplexity Documents

1 code implementation11 Mar 2025 Haoyu Wang, Sunhao Dai, Haiyuan Zhao, Liang Pang, Xiao Zhang, Gang Wang, Zhenhua Dong, Jun Xu, Ji-Rong Wen

In this paper, we explain the process of information retrieval with a causal graph and discover that PLM-based retrievers learn perplexity features for relevance estimation, causing source bias by ranking the documents with low perplexity higher.

Information Retrieval Language Modeling +2

Revisiting Robust RAG: Do We Still Need Complex Robust Training in the Era of Powerful LLMs?

no code implementations17 Feb 2025 Hanxing Ding, Shuchang Tao, Liang Pang, Zihao Wei, Liwei Chen, Kun Xu, HuaWei Shen, Xueqi Cheng

Our findings suggest that RAG systems can benefit from simpler architectures and training strategies as models become more powerful, enabling more scalable applications with minimal complexity.

RAG Retrieval

Following the Autoregressive Nature of LLM Embeddings via Compression and Alignment

1 code implementation17 Feb 2025 Jingcheng Deng, Zhongtao Jiang, Liang Pang, Liwei Chen, Kun Xu, Zihao Wei, HuaWei Shen, Xueqi Cheng

The conditional distribution alignment task focuses on aligning text embeddings with positive samples embeddings by leveraging the conditional distribution of embeddings while simultaneously reducing the likelihood of generating negative samples from text embeddings, thereby achieving embedding alignment and uniformity.

Contrastive Learning

ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models

1 code implementation17 Feb 2025 Hanxing Ding, Shuchang Tao, Liang Pang, Zihao Wei, Jinyang Gao, Bolin Ding, HuaWei Shen, Xueqi Chen

Tool learning has emerged as a crucial capability for large language models (LLMs) to solve complex real-world tasks through interaction with external tools.

Code Generation Descriptive +1

FineFilter: A Fine-grained Noise Filtering Mechanism for Retrieval-Augmented Large Language Models

no code implementations17 Feb 2025 Qianchi Zhang, Hainan Zhang, Liang Pang, Hongwei Zheng, Yongxin Tong, Zhiming Zheng

We optimize each module to tackle complex reasoning challenges: (1) Clue extractor firstly uses sentences containing the answer and similar ones as fine-tuned targets, aiming at extracting sufficient potential clues; (2) Re-ranker is trained to prioritize effective clues based on the real feedback from generation module, with clues capable of generating correct answer as positive samples and others as negative; (3) Truncator takes the minimum clues needed to answer the question (truncation point) as fine-tuned targets, and performs truncation on the re-ranked clues to achieve fine-grained noise filtering.

RAG Re-Ranking +1

Bridging Jensen Gap for Max-Min Group Fairness Optimization in Recommendation

1 code implementation13 Feb 2025 Chen Xu, Yuxin Li, Wenjie Wang, Liang Pang, Jun Xu, Tat-Seng Chua

To overcome these limitations, we first theoretically demonstrate that the MMF-constrained objective can be essentially reformulated as a group-weighted optimization objective.

Fairness Recommendation Systems

Cross-Modal Safety Mechanism Transfer in Large Vision-Language Models

no code implementations16 Oct 2024 Shicheng Xu, Liang Pang, Yunchang Zhu, HuaWei Shen, Xueqi Cheng

Vision-language alignment in Large Vision-Language Models (LVLMs) successfully enables LLMs to understand visual input.

Visual Question Answering

Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration

no code implementations2 Oct 2024 Kangxi Wu, Liang Pang, HuaWei Shen, Xueqi Cheng

In this paper, we introduce a novel TDA method called Debias and Denoise Attribution (DDA), which enhances influence functions by addressing fitting errors.

Hallucination

AdaComp: Extractive Context Compression with Adaptive Predictor for Retrieval-Augmented Large Language Models

no code implementations3 Sep 2024 Qianchi Zhang, Hainan Zhang, Liang Pang, Hongwei Zheng, Zhiming Zheng

Specifically, we first annotate the minimum top-k documents necessary for the RAG system to answer the current query as the compression rate and then construct triplets of the query, retrieved documents, and its compression rate.

RAG Retrieval +1

A Theory for Token-Level Harmonization in Retrieval-Augmented Generation

no code implementations3 Jun 2024 Shicheng Xu, Liang Pang, HuaWei Shen, Xueqi Cheng

Based on our theory, we propose a practical novel method, Tok-RAG, which achieves collaborative generation between the pure LLM and RAG at token level to preserve benefit and avoid detriment.

RAG Retrieval

Cocktail: A Comprehensive Information Retrieval Benchmark with LLM-Generated Documents Integration

1 code implementation26 May 2024 Sunhao Dai, Weihao Liu, Yuqi Zhou, Liang Pang, Rongju Ruan, Gang Wang, Zhenhua Dong, Jun Xu, Ji-Rong Wen

The proliferation of Large Language Models (LLMs) has led to an influx of AI-generated content (AIGC) on the internet, transforming the corpus of Information Retrieval (IR) systems from solely human-written to a coexistence with LLM-generated content.

Information Retrieval Text Retrieval

Everything is Editable: Extend Knowledge Editing to Unstructured Data in Large Language Models

1 code implementation24 May 2024 Jingcheng Deng, Zihao Wei, Liang Pang, Hanxing Ding, HuaWei Shen, Xueqi Cheng

Firstly, in the layer dimension, we propose non-local block key-value storage to replace local layer key-value storage, increasing the representation ability of key-value pairs and incorporating attention layer knowledge.

knowledge editing World Knowledge

A Taxation Perspective for Fair Re-ranking

1 code implementation27 Apr 2024 Chen Xu, Xiaopeng Ye, Wenjie Wang, Liang Pang, Jun Xu, Tat-Seng Chua

From a taxation perspective, we theoretically demonstrate that most previous fair re-ranking methods can be reformulated as an item-level tax policy.

Ethics Fairness +1

A Survey of Generative Search and Recommendation in the Era of Large Language Models

no code implementations25 Apr 2024 Yongqi Li, Xinyu Lin, Wenjie Wang, Fuli Feng, Liang Pang, Wenjie Li, Liqiang Nie, Xiangnan He, Tat-Seng Chua

With the information explosion on the Web, search and recommendation are foundational infrastructures to satisfying users' information needs.

Bias and Unfairness in Information Retrieval Systems: New Challenges in the LLM Era

1 code implementation17 Apr 2024 Sunhao Dai, Chen Xu, Shicheng Xu, Liang Pang, Zhenhua Dong, Jun Xu

With the rapid advancements of large language models (LLMs), information retrieval (IR) systems, such as search engines and recommender systems, have undergone a significant paradigm shift.

Fairness Information Retrieval +3

Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales

no code implementations17 Apr 2024 Minghe Gao, Shuang Chen, Liang Pang, Yuan YAO, Jisheng Dang, Wenqiao Zhang, Juncheng Li, Siliang Tang, Yueting Zhuang, Tat-Seng Chua

Their ability to execute intricate compositional reasoning tasks is also constrained, culminating in a stagnation of learning progression for these models.

Hallucination

Do LLMs Play Dice? Exploring Probability Distribution Sampling in Large Language Models for Behavioral Simulation

no code implementations13 Apr 2024 Jia Gu, Liang Pang, HuaWei Shen, Xueqi Cheng

With the rapid advancement of large language models (LLMs) for handling complex language tasks, an increasing number of studies are employing LLMs as agents to emulate the sequential decision-making processes of humans often represented as Markov decision-making processes (MDPs).

Decision Making Sequential Decision Making

Knowledge Boundary and Persona Dynamic Shape A Better Social Media Agent

1 code implementation28 Mar 2024 Junkai Zhou, Liang Pang, Ya Jing, Jia Gu, HuaWei Shen, Xueqi Cheng

For dynamic persona information, we use current action information to internally retrieve the persona information of the agent, thereby reducing the interference of diverse persona information on the current action.

World Knowledge

Thermal-NeRF: Neural Radiance Fields from an Infrared Camera

1 code implementation15 Mar 2024 Tianxiang Ye, Qi Wu, Junyuan Deng, Guoqing Liu, Liu Liu, Songpengcheng Xia, Liang Pang, Wenxian Yu, Ling Pei

In recent years, Neural Radiance Fields (NeRFs) have demonstrated significant potential in encoding highly-detailed 3D geometry and environmental appearance, positioning themselves as a promising alternative to traditional explicit representation for 3D scene reconstruction.

3D geometry 3D Scene Reconstruction +1

Beyond Memorization: The Challenge of Random Memory Access in Language Models

1 code implementation12 Mar 2024 Tongyao Zhu, Qian Liu, Liang Pang, Zhengbao Jiang, Min-Yen Kan, Min Lin

Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content.

Memorization Open-Domain Question Answering

Can Small Language Models be Good Reasoners for Sequential Recommendation?

no code implementations7 Mar 2024 Yuling Wang, Changxin Tian, Binbin Hu, Yanhua Yu, Ziqi Liu, Zhiqiang Zhang, Jun Zhou, Liang Pang, Xiao Wang

We encode the generated rationales from the student model into a dense vector, which empowers recommendation in both ID-based and ID-agnostic scenarios.

Knowledge Distillation Sequential Recommendation

GraphEdit: Large Language Models for Graph Structure Learning

1 code implementation23 Feb 2024 Zirui Guo, Lianghao Xia, Yanhua Yu, Yuling Wang, Zixuan Yang, Wei Wei, Liang Pang, Tat-Seng Chua, Chao Huang

Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data by generating novel graph structures.

Graph structure learning

Qsnail: A Questionnaire Dataset for Sequential Question Generation

1 code implementation22 Feb 2024 Yan Lei, Liang Pang, Yuanzhuo Wang, HuaWei Shen, Xueqi Cheng

Questionnaires entail a series of questions that must conform to intricate constraints involving the questions, options, and overall structure.

Question Generation Question-Generation +1

Improving Video Corpus Moment Retrieval with Partial Relevance Enhancement

1 code implementation21 Feb 2024 Danyang Hou, Liang Pang, HuaWei Shen, Xueqi Cheng

We argue that effectively capturing the partial relevance between the query and video is essential for the VCMR task.

Moment Retrieval Retrieval +2

Event-aware Video Corpus Moment Retrieval

no code implementations21 Feb 2024 Danyang Hou, Liang Pang, HuaWei Shen, Xueqi Cheng

Video Corpus Moment Retrieval (VCMR) is a practical video retrieval task focused on identifying a specific moment within a vast corpus of untrimmed videos using the natural language query.

Contrastive Learning Moment Retrieval +4

Stable Knowledge Editing in Large Language Models

1 code implementation20 Feb 2024 Zihao Wei, Liang Pang, Hanxing Ding, Jingcheng Deng, HuaWei Shen, Xueqi Cheng

The premise of localization results in an incomplete knowledge editing, whereas an isolated assumption may impair both other knowledge and general abilities.

knowledge editing

Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models

no code implementations16 Feb 2024 Hanxing Ding, Liang Pang, Zihao Wei, HuaWei Shen, Xueqi Cheng

A careful and balanced integration of the parametric knowledge within LLMs with external information is crucial to alleviate hallucinations.

Hallucination Retrieval

SCTc-TE: A Comprehensive Formulation and Benchmark for Temporal Event Forecasting

1 code implementation2 Dec 2023 Yunshan Ma, Chenchen Ye, Zijian Wu, Xiang Wang, Yixin Cao, Liang Pang, Tat-Seng Chua

Temporal complex event forecasting aims to predict the future events given the observed events from history.

Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images

1 code implementation23 Nov 2023 Shicheng Xu, Danyang Hou, Liang Pang, Jingcheng Deng, Jun Xu, HuaWei Shen, Xueqi Cheng

Furthermore, our subsequent exploration reveals that the inclusion of AI-generated images in the training data of the retrieval models exacerbates the invisible relevance bias.

Cross-Modal Retrieval Image Retrieval +1

HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data

1 code implementation CVPR 2024 Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wentao Ye, Bosheng Qin, Siliang Tang, Qi Tian, Yueting Zhuang

Multi-modal Large Language Models (MLLMs) tuned on machine-generated instruction-following data have demonstrated remarkable performance in various multi-modal understanding and generation tasks.

Attribute counterfactual +3

De-fine: Decomposing and Refining Visual Programs with Auto-Feedback

no code implementations21 Nov 2023 Minghe Gao, Juncheng Li, Hao Fei, Liang Pang, Wei Ji, Guoming Wang, Zheqi Lv, Wenqiao Zhang, Siliang Tang, Yueting Zhuang

Visual programming, a modular and generalizable paradigm, integrates different modules and Python operators to solve various vision-language tasks.

Logical Reasoning

A Study of Implicit Ranking Unfairness in Large Language Models

1 code implementation13 Nov 2023 Chen Xu, Wenjie Wang, Yuxin Li, Liang Pang, Jun Xu, Tat-Seng Chua

Worse still, in this paper, we identify a subtler form of discrimination in LLMs, termed \textit{implicit ranking unfairness}, where LLMs exhibit discriminatory ranking patterns based solely on non-sensitive user profiles, such as user names.

Data Augmentation Fairness +3

Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue

1 code implementation13 Nov 2023 Junkai Zhou, Liang Pang, HuaWei Shen, Xueqi Cheng

The emergence of large language models (LLMs) further improves the capabilities of open-domain dialogue systems and can generate fluent, coherent, and diverse responses.

Dialogue Generation In-Context Learning +2

Plot Retrieval as an Assessment of Abstract Semantic Association

no code implementations3 Nov 2023 Shicheng Xu, Liang Pang, Jiangnan Li, Mo Yu, Fandong Meng, HuaWei Shen, Xueqi Cheng, Jie zhou

Readers usually only give an abstract and vague description as the query based on their own understanding, summaries, or speculations of the plot, which requires the retrieval model to have a strong ability to estimate the abstract semantic associations between the query and candidate plots.

Information Retrieval Retrieval

Neural Retrievers are Biased Towards LLM-Generated Content

2 code implementations31 Oct 2023 Sunhao Dai, Yuqi Zhou, Liang Pang, Weihao Liu, Xiaolin Hu, Yong liu, Xiao Zhang, Gang Wang, Jun Xu

Surprisingly, our findings indicate that neural retrieval models tend to rank LLM-generated documents higher.

Information Retrieval Retrieval +1

RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder for Language Modeling

1 code implementation16 Oct 2023 Jingcheng Deng, Liang Pang, HuaWei Shen, Xueqi Cheng

It encodes the text corpus into a latent space, capturing current and future information from both source and target text.

Hallucination Language Modeling +3

Multi-level Adaptive Contrastive Learning for Knowledge Internalization in Dialogue Generation

no code implementations13 Oct 2023 Chenxu Yang, Zheng Lin, Lanrui Wang, Chong Tian, Liang Pang, Jiangnan Li, Qirong Ho, Yanan Cao, Weiping Wang

Knowledge-grounded dialogue generation aims to mitigate the issue of text degeneration by incorporating external knowledge to supplement the context.

Contrastive Learning Dialogue Generation

MacLaSa: Multi-Aspect Controllable Text Generation via Efficient Sampling from Compact Latent Space

1 code implementation22 May 2023 Hanxing Ding, Liang Pang, Zihao Wei, HuaWei Shen, Xueqi Cheng, Tat-Seng Chua

Multi-aspect controllable text generation aims to generate fluent sentences that possess multiple desired attributes simultaneously.

Attribute Decoder +1

Visual Transformation Telling

1 code implementation3 May 2023 Wanqing Cui, Xin Hong, Yanyan Lan, Liang Pang, Jiafeng Guo, Xueqi Cheng

Humans can naturally reason from superficial state differences (e. g. ground wetness) to transformations descriptions (e. g. raining) according to their life experience.

Dense Video Captioning Visual Reasoning +1

Visual Reasoning: from State to Transformation

1 code implementation2 May 2023 Xin Hong, Yanyan Lan, Liang Pang, Jiafeng Guo, Xueqi Cheng

Such \textbf{state driven} visual reasoning has limitations in reflecting the ability to infer the dynamics between different states, which has shown to be equally important for human cognition in Piaget's theory.

Visual Question Answering (VQA) Visual Reasoning

Search-in-the-Chain: Interactively Enhancing Large Language Models with Search for Knowledge-intensive Tasks

1 code implementation28 Apr 2023 Shicheng Xu, Liang Pang, HuaWei Shen, Xueqi Cheng, Tat-Seng Chua

This paper proposes a novel framework named \textbf{Search-in-the-Chain} (SearChain) for the interaction between LLM and IR to solve the challenges.

Ranked #2 on Question Answering on StrategyQA (EM metric)

Fact Checking Information Retrieval +7

Multi-video Moment Ranking with Multimodal Clue

no code implementations29 Jan 2023 Danyang Hou, Liang Pang, Yanyan Lan, HuaWei Shen, Xueqi Cheng

In this paper, we focus on improving two problems of two-stage method: (1) Moment prediction bias: The predicted moments for most queries come from the top retrieved videos, ignoring the possibility that the target moment is in the bottom retrieved videos, which is caused by the inconsistency of Shared Normalization during training and inference.

Moment Retrieval Retrieval +1

Cross-Model Comparative Loss for Enhancing Neuronal Utility in Language Understanding

1 code implementation10 Jan 2023 Yunchang Zhu, Liang Pang, Kangxi Wu, Yanyan Lan, HuaWei Shen, Xueqi Cheng

Comparative loss is essentially a ranking loss on top of the task-specific losses of the full and ablated models, with the expectation that the task-specific loss of the full model is minimal.

Natural Language Understanding Network Pruning

NIR-Prompt: A Multi-task Generalized Neural Information Retrieval Training Framework

1 code implementation1 Dec 2022 Shicheng Xu, Liang Pang, HuaWei Shen, Xueqi Cheng

Different needs correspond to different IR tasks such as document retrieval, open-domain question answering, retrieval-based dialogue, etc., while they share the same schema to estimate the relationship between texts.

Information Retrieval Open-Domain Question Answering +1

LoL: A Comparative Regularization Loss over Query Reformulation Losses for Pseudo-Relevance Feedback

1 code implementation25 Apr 2022 Yunchang Zhu, Liang Pang, Yanyan Lan, HuaWei Shen, Xueqi Cheng

Ideally, if a PRF model can distinguish between irrelevant and relevant information in the feedback, the more feedback documents there are, the better the revised query will be.

Retrieval

Uncertainty Calibration for Ensemble-Based Debiasing Methods

no code implementations NeurIPS 2021 Ruibin Xiong, Yimeng Chen, Liang Pang, Xueqi Chen, Yanyan Lan

Ensemble-based debiasing methods have been shown effective in mitigating the reliance of classifiers on specific dataset bias, by exploiting the output of a bias-only model to adjust the learning target.

Fact Verification

Transductive Learning for Unsupervised Text Style Transfer

1 code implementation EMNLP 2021 Fei Xiao, Liang Pang, Yanyan Lan, Yan Wang, HuaWei Shen, Xueqi Cheng

The proposed transductive learning approach is general and effective to the task of unsupervised style transfer, and we will apply it to the other two typical methods in the future.

Decoder Inductive Learning +5

Toward the Understanding of Deep Text Matching Models for Information Retrieval

no code implementations16 Aug 2021 Lijuan Chen, Yanyan Lan, Liang Pang, Jiafeng Guo, Xueqi Cheng

We further extend these constraints to the semantic settings, which are shown to be better satisfied for all the deep text matching models.

Information Retrieval Retrieval +2

Modeling Relevance Ranking under the Pre-training and Fine-tuning Paradigm

no code implementations12 Aug 2021 Lin Bo, Liang Pang, Gang Wang, Jun Xu, Xiuqiang He, Ji-Rong Wen

Experimental results base on three publicly available benchmarks showed that in both of the implementations, Pre-Rank can respectively outperform the underlying ranking models and achieved state-of-the-art performances.

Document Ranking Information Retrieval +3

Sketch and Customize: A Counterfactual Story Generator

1 code implementation2 Apr 2021 Changying Hao, Liang Pang, Yanyan Lan, Yan Wang, Jiafeng Guo, Xueqi Cheng

In the sketch stage, a skeleton is extracted by removing words which are conflict to the counterfactual condition, from the original ending.

counterfactual Text Generation

Match-Ignition: Plugging PageRank into Transformer for Long-form Text Matching

1 code implementation16 Jan 2021 Liang Pang, Yanyan Lan, Xueqi Cheng

However, these models designed for short texts cannot well address the long-form text matching problem, because there are many contexts in long-form texts can not be directly aligned with each other, and it is difficult for existing models to capture the key matching signals from such noisy data.

Community Question Answering Form +6

Transformation Driven Visual Reasoning

1 code implementation CVPR 2021 Xin Hong, Yanyan Lan, Liang Pang, Jiafeng Guo, Xueqi Cheng

Following this definition, a new dataset namely TRANCE is constructed on the basis of CLEVR, including three levels of settings, i. e.~Basic (single-step transformation), Event (multi-step transformation), and View (multi-step transformation with variant views).

Attribute Triplet +2

Beyond Language: Learning Commonsense from Images for Reasoning

1 code implementation Findings of the Association for Computational Linguistics 2020 Wanqing Cui, Yanyan Lan, Liang Pang, Jiafeng Guo, Xueqi Cheng

This paper proposes a novel approach to learn commonsense from images, instead of limited raw texts or costly constructed knowledge bases, for the commonsense reasoning problem in NLP.

Language Modeling Language Modelling +2

Modeling Topical Relevance for Multi-Turn Dialogue Generation

no code implementations27 Sep 2020 Hainan Zhang, Yanyan Lan, Liang Pang, Hongshen Chen, Zhuoye Ding, Dawei Yin

Therefore, an ideal dialogue generation models should be able to capture the topic information of each context, detect the relevant context, and produce appropriate responses accordingly.

Dialogue Generation Sentence

Ranking Enhanced Dialogue Generation

no code implementations13 Aug 2020 Changying Hao, Liang Pang, Yanyan Lan, Fei Sun, Jiafeng Guo, Xue-Qi Cheng

To tackle this problem, we propose a Ranking Enhanced Dialogue generation framework in this paper.

Dialogue Generation Response Generation

Robust Reinforcement Learning with Wasserstein Constraint

no code implementations1 Jun 2020 Linfang Hou, Liang Pang, Xin Hong, Yanyan Lan, Zhi-Ming Ma, Dawei Yin

Robust Reinforcement Learning aims to find the optimal policy with some extent of robustness to environmental dynamics.

reinforcement-learning Reinforcement Learning +1

L2R2: Leveraging Ranking for Abductive Reasoning

1 code implementation22 May 2020 Yunchang Zhu, Liang Pang, Yanyan Lan, Xue-Qi Cheng

To fill this gap, we switch to a ranking perspective that sorts the hypotheses in order of their plausibilities.

Language Modelling Learning-To-Rank +1

SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval

2 code implementations12 Dec 2019 Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xue-Qi Cheng, Ji-Rong Wen

In learning-to-rank for information retrieval, a ranking model is automatically learned from the data and then utilized to rank the sets of retrieved documents.

Information Retrieval Learning-To-Rank +1

Continual Match Based Training in Pommerman: Technical Report

no code implementations18 Dec 2018 Peng Peng, Liang Pang, Yufeng Yuan, Chao GAO

We show in the experiments that Pommerman is a perfect environment for studying continual learning, and the agent can improve its performance by continually learning new skills without forgetting the old ones.

Continual Learning

Locally Smoothed Neural Networks

1 code implementation22 Nov 2017 Liang Pang, Yanyan Lan, Jun Xu, Jiafeng Guo, Xue-Qi Cheng

The main idea is to represent the weight matrix of the locally connected layer as the product of the kernel and the smoother, where the kernel is shared over different local receptive fields, and the smoother is for determining the importance and relations of different local receptive fields.

Face Verification Question Answering +1

A Deep Investigation of Deep IR Models

no code implementations24 Jul 2017 Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Xue-Qi Cheng

Therefore, it is necessary to identify the difference between automatically learned features by deep IR models and hand-crafted features used in traditional learning to rank approaches.

Information Retrieval Learning-To-Rank +1

MatchZoo: A Toolkit for Deep Text Matching

1 code implementation23 Jul 2017 Yixing Fan, Liang Pang, Jianpeng Hou, Jiafeng Guo, Yanyan Lan, Xue-Qi Cheng

In recent years, deep neural models have been widely adopted for text matching tasks, such as question answering and information retrieval, showing improved performance as compared with previous methods.

Ad-Hoc Information Retrieval Information Retrieval +3

A Study of MatchPyramid Models on Ad-hoc Retrieval

1 code implementation15 Jun 2016 Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Xue-Qi Cheng

Although ad-hoc retrieval can also be formalized as a text matching task, few deep models have been tested on it.

Machine Translation Paraphrase Identification +4

Match-SRNN: Modeling the Recursive Matching Structure with Spatial RNN

1 code implementation15 Apr 2016 Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, Xue-Qi Cheng

In this paper, we propose to view the generation of the global interaction between two texts as a recursive process: i. e. the interaction of two texts at each position is a composition of the interactions between their prefixes as well as the word level interaction at the current position.

Position

Text Matching as Image Recognition

7 code implementations20 Feb 2016 Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, Xue-Qi Cheng

An effective way is to extract meaningful matching patterns from words, phrases, and sentences to produce the matching score.

Ad-Hoc Information Retrieval Text Matching

A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations

1 code implementation26 Nov 2015 Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, Xue-Qi Cheng

Our model has several advantages: (1) By using Bi-LSTM, rich context of the whole sentence is leveraged to capture the contextualized local information in each positional sentence representation; (2) By matching with multiple positional sentence representations, it is flexible to aggregate different important contextualized local information in a sentence to support the matching; (3) Experiments on different tasks such as question answering and sentence completion demonstrate the superiority of our model.

Information Retrieval Question Answering +3

Combination of Diverse Ranking Models for Personalized Expedia Hotel Searches

no code implementations29 Nov 2013 Xudong Liu, Bing Xu, Yuyu Zhang, Qiang Yan, Liang Pang, Qiang Li, Hanxiao Sun, Bin Wang

The ICDM Challenge 2013 is to apply machine learning to the problem of hotel ranking, aiming to maximize purchases according to given hotel characteristics, location attractiveness of hotels, user's aggregated purchase history and competitive online travel agency information for each potential hotel choice.

BIG-bench Machine Learning Feature Engineering

Cannot find the paper you are looking for? You can Submit a new open access paper.