Search Results for author: Lichan Hong

Found 16 papers, 5 papers with code

Improving Multi-Task Generalization via Regularizing Spurious Correlation

no code implementations19 May 2022 Ziniu Hu, Zhe Zhao, Xinyang Yi, Tiansheng Yao, Lichan Hong, Yizhou Sun, Ed H. Chi

First, the risk of having non-causal knowledge is higher, as the shared MTL model needs to encode all knowledge from different tasks, and causal knowledge for one task could be potentially spurious to the other.

Multi-Task Learning Representation Learning

Learning to Embed Categorical Features without Embedding Tables for Recommendation

no code implementations21 Oct 2020 Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting Chen, Lichan Hong, Ed H. Chi

Embedding learning of categorical features (e. g. user/item IDs) is at the core of various recommendation models including matrix factorization and neural collaborative filtering.

Collaborative Filtering Natural Language Understanding +2

Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems

no code implementations17 Aug 2020 Zhe Chen, Yuyan Wang, Dong Lin, Derek Zhiyuan Cheng, Lichan Hong, Ed H. Chi, Claire Cui

Despite deep neural network (DNN)'s impressive prediction performance in various domains, it is well known now that a set of DNN models trained with the same model specification and the same data can produce very different prediction results.

Model-based Reinforcement Learning Recommendation Systems

Small Towers Make Big Differences

no code implementations13 Aug 2020 Yuyan Wang, Zhe Zhao, Bo Dai, Christopher Fifty, Dong Lin, Lichan Hong, Ed H. Chi

A delicate balance between multi-task generalization and multi-objective optimization is therefore needed for finding a better trade-off between efficiency and generalization.

Multi-Task Learning

Learning-to-Rank with Partitioned Preference: Fast Estimation for the Plackett-Luce Model

no code implementations9 Jun 2020 Jiaqi Ma, Xinyang Yi, Weijing Tang, Zhe Zhao, Lichan Hong, Ed H. Chi, Qiaozhu Mei

We investigate the Plackett-Luce (PL) model based listwise learning-to-rank (LTR) on data with partitioned preference, where a set of items are sliced into ordered and disjoint partitions, but the ranking of items within a partition is unknown.

Extreme Multi-Label Classification Learning-To-Rank +2

Recommending what video to watch next: a multitask ranking system

no code implementations RecSys 2019 Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, Ed Chi

In this paper, we introduce a large scale multi-objective ranking system for recommending what video to watch next on an industrial video sharing platform.

Fairness in Recommendation Ranking through Pairwise Comparisons

no code implementations2 Mar 2019 Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe Zhao, Lichan Hong, Ed H. Chi, Cristos Goodrow

Recommender systems are one of the most pervasive applications of machine learning in industry, with many services using them to match users to products or information.

Fairness Recommendation Systems

Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts

4 code implementations19 Jul 2018 Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, Ed Chi

In this work, we propose a novel multi-task learning approach, Multi-gate Mixture-of-Experts (MMoE), which explicitly learns to model task relationships from data.

Click-Through Rate Prediction Multi-Task Learning +1

Wide & Deep Learning for Recommender Systems

31 code implementations24 Jun 2016 Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, Hemal Shah

Memorization of feature interactions through a wide set of cross-product feature transformations are effective and interpretable, while generalization requires more feature engineering effort.

Click-Through Rate Prediction Feature Engineering +2

Cannot find the paper you are looking for? You can Submit a new open access paper.