1 code implementation • 30 Dec 2024 • Lihao Liu, Juexiao Feng, Hui Chen, Ao Wang, Lin Song, Jungong Han, Guiguang Ding
In this work, we introduce Universal Open-World Object Detection (Uni-OWD), a new paradigm that unifies open-vocabulary and open-world object detection tasks.
no code implementations • 30 Nov 2024 • Xinzheng Wu, Junyi Chen, Xingyu Xing, Jian Sun, Ye Tian, Lihao Liu, Yong Shen
In fact, all the subspaces representing danger in the logical scenario space, rather than only the most critical concrete scenario, play a more significant role for the safety evaluation.
no code implementations • 22 Nov 2024 • Linrui Gong, Jiuming Liu, Junyi Ma, Lihao Liu, Yaonan Wang, Hesheng Wang
To address this issue, we propose a novel framework named EADReg for efficient and robust registration of LiDAR point clouds based on autoregressive diffusion models.
1 code implementation • 10 Sep 2024 • Hui-Yue Yang, Hui Chen, Lihao Liu, Zijia Lin, Kai Chen, Liejun Wang, Jungong Han, Guiguang Ding
By incorporating the RASFormer block, our RAS method achieves superior contextual awareness capabilities, leading to remarkable performance.
Multi-class Anomaly Detection Unsupervised Anomaly Detection
no code implementations • 4 Jun 2024 • Pengze Li, Lihao Liu, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero
In this paper, part of the DREAMING Challenge - Diminished Reality for Emerging Applications in Medicine through Inpainting, we introduce a refined video inpainting technique optimised from the ProPainter method to meet the specialised demands of medical imaging, specifically in the context of oral and maxillofacial surgery.
no code implementations • 23 May 2024 • Jiuming Liu, Jinru Han, Lihao Liu, Angelica I. Aviles-Rivero, Chaokang Jiang, Zhe Liu, Hesheng Wang
Point cloud videos can faithfully capture real-world spatial geometries and temporal dynamics, which are essential for enabling intelligent agents to understand the dynamically changing world.
3 code implementations • 23 May 2024 • Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, Guiguang Ding
In this work, we aim to further advance the performance-efficiency boundary of YOLOs from both the post-processing and model architecture.
Ranked #23 on Real-Time Object Detection on MS COCO
no code implementations • 14 Mar 2024 • Lipei Zhang, Yanqi Cheng, Lihao Liu, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero
Recent advances in deep learning have significantly improved brain tumour segmentation techniques; however, the results still lack confidence and robustness as they solely consider image data without biophysical priors or pathological information.
no code implementations • 30 Nov 2023 • Lihao Liu, Yanqi Cheng, Zhongying Deng, Shujun Wang, Dongdong Chen, Xiaowei Hu, Pietro Liò, Carola-Bibiane Schönlieb, Angelica Aviles-Rivero
Multi-object tracking in traffic videos is a crucial research area, offering immense potential for enhancing traffic monitoring accuracy and promoting road safety measures through the utilisation of advanced machine learning algorithms.
no code implementations • 16 Nov 2023 • Lihao Liu, Yanqi Cheng, Dongdong Chen, Jing He, Pietro Liò, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero
In this work, we propose two innovative methods to exploit the motion prior and boost the performance of both fully-supervised and semi-supervised traffic video object detection.
no code implementations • 2 Aug 2023 • Yijun Yang, Shujun Wang, Lihao Liu, Sarah Hickman, Fiona J Gilbert, Carola-Bibiane Schönlieb, Angelica I. Aviles-Rivero
This work devises MammoDG, a novel deep-learning framework for generalisable and reliable analysis of cross-domain multi-center mammography data.
no code implementations • 14 Mar 2023 • Jing Zou, Noémie Debroux, Lihao Liu, Jing Qin, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero
We propose a novel framework for deformable image registration.
1 code implementation • 11 Mar 2023 • Simon Graham, Quoc Dang Vu, Mostafa Jahanifar, Martin Weigert, Uwe Schmidt, Wenhua Zhang, Jun Zhang, Sen yang, Jinxi Xiang, Xiyue Wang, Josef Lorenz Rumberger, Elias Baumann, Peter Hirsch, Lihao Liu, Chenyang Hong, Angelica I. Aviles-Rivero, Ayushi Jain, Heeyoung Ahn, Yiyu Hong, Hussam Azzuni, Min Xu, Mohammad Yaqub, Marie-Claire Blache, Benoît Piégu, Bertrand Vernay, Tim Scherr, Moritz Böhland, Katharina Löffler, Jiachen Li, Weiqin Ying, Chixin Wang, Dagmar Kainmueller, Carola-Bibiane Schönlieb, Shuolin Liu, Dhairya Talsania, Yughender Meda, Prakash Mishra, Muhammad Ridzuan, Oliver Neumann, Marcel P. Schilling, Markus Reischl, Ralf Mikut, Banban Huang, Hsiang-Chin Chien, Ching-Ping Wang, Chia-Yen Lee, Hong-Kun Lin, Zaiyi Liu, Xipeng Pan, Chu Han, Jijun Cheng, Muhammad Dawood, Srijay Deshpande, Raja Muhammad Saad Bashir, Adam Shephard, Pedro Costa, João D. Nunes, Aurélio Campilho, Jaime S. Cardoso, Hrishikesh P S, Densen Puthussery, Devika R G, Jiji C V, Ye Zhang, Zijie Fang, Zhifan Lin, Yongbing Zhang, Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Vi Thi-Tuong Vo, Soo-Hyung Kim, Taebum Lee, Satoshi Kondo, Satoshi Kasai, Pranay Dumbhare, Vedant Phuse, Yash Dubey, Ankush Jamthikar, Trinh Thi Le Vuong, Jin Tae Kwak, Dorsa Ziaei, Hyun Jung, Tianyi Miao, David Snead, Shan E Ahmed Raza, Fayyaz Minhas, Nasir M. Rajpoot
Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome.
no code implementations • 1 Feb 2023 • Chun-Wun Cheng, Christina Runkel, Lihao Liu, Raymond H Chan, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero
Despite the powerful performance reported by existing U-Net type networks, they suffer from several major limitations.
no code implementations • 17 Nov 2022 • Zhongying Deng, Yanqi Chen, Lihao Liu, Shujun Wang, Rihuan Ke, Carola-Bibiane Schonlieb, Angelica I Aviles-Rivero
Firstly, TrafficCAM provides both pixel-level and instance-level semantic labelling along with a large range of types of vehicles and pedestrians.
no code implementations • CVPR 2023 • Lihao Liu, Jean Prost, Lei Zhu, Nicolas Papadakis, Pietro Liò, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero
In this work, we argue that accounting for shadow deformation is essential when designing a video shadow detection method.
no code implementations • 18 Sep 2022 • Yanqi Cheng, Lihao Liu, Shujun Wang, Yueming Jin, Carola-Bibiane Schönlieb, Angelica I. Aviles-Rivero
This is the question that we address in this work.
no code implementations • 25 Mar 2022 • Lihao Liu, Tianyue Feng, Xingyu Xing, Junyi Chen
Black-box functions are broadly used to model complex problems that provide no explicit information but the input and output.
no code implementations • 10 Mar 2022 • Lihao Liu, Zhening Huang, Pietro Liò, Carola-Bibiane Schönlieb, Angelica I. Aviles-Rivero
The core of our framework is two patch-based strategies, where we demonstrate that patch representation is key for performance gain.
1 code implementation • 1 Mar 2022 • Lihao Liu, Chenyang Hong, Angelica I. Aviles-Rivero, Carola-Bibiane Schönlieb
In this work, we present a solution framed as a simultaneous semantic and instance segmentation framework.
1 code implementation • 17 Nov 2020 • Lihao Liu, Angelica I Aviles-Rivero, Carola-Bibiane Schönlieb
Secondly, we embed a contrastive learning mechanism into the registration architecture to enhance the discriminating capacity of the network in the feature-level.
no code implementations • 3 Jul 2019 • Lihao Liu, Xiaowei Hu, Lei Zhu, Pheng-Ann Heng
This paper presents a novel framework for unsupervised 3D brain image registration by capturing the feature-level transformation relationships between the unaligned image and reference image.