no code implementations • 19 Jul 2022 • Boris Babenko, Ilana Traynis, Christina Chen, Preeti Singh, Akib Uddin, Jorge Cuadros, Lauren P. Daskivich, April Y. Maa, Ramasamy Kim, Eugene Yu-Chuan Kang, Yossi Matias, Greg S. Corrado, Lily Peng, Dale R. Webster, Christopher Semturs, Jonathan Krause, Avinash V. Varadarajan, Naama Hammel, Yun Liu
On validation sets B and C, with substantial patient population differences compared to the development sets, the DLS outperformed the baseline for ACR>=300 and Hgb<11 by 7. 3-13. 2%.
3 code implementations • 19 May 2022 • Shekoofeh Azizi, Laura Culp, Jan Freyberg, Basil Mustafa, Sebastien Baur, Simon Kornblith, Ting Chen, Patricia MacWilliams, S. Sara Mahdavi, Ellery Wulczyn, Boris Babenko, Megan Wilson, Aaron Loh, Po-Hsuan Cameron Chen, YuAn Liu, Pinal Bavishi, Scott Mayer McKinney, Jim Winkens, Abhijit Guha Roy, Zach Beaver, Fiona Ryan, Justin Krogue, Mozziyar Etemadi, Umesh Telang, Yun Liu, Lily Peng, Greg S. Corrado, Dale R. Webster, David Fleet, Geoffrey Hinton, Neil Houlsby, Alan Karthikesalingam, Mohammad Norouzi, Vivek Natarajan
These results suggest that REMEDIS can significantly accelerate the life-cycle of medical imaging AI development thereby presenting an important step forward for medical imaging AI to deliver broad impact.
no code implementations • 18 Mar 2022 • Ryan G. Gomes, Bellington Vwalika, Chace Lee, Angelica Willis, Marcin Sieniek, Joan T. Price, Christina Chen, Margaret P. Kasaro, James A. Taylor, Elizabeth M. Stringer, Scott Mayer McKinney, Ntazana Sindano, George E. Dahl, William Goodnight III, Justin Gilmer, Benjamin H. Chi, Charles Lau, Terry Spitz, T Saensuksopa, Kris Liu, Jonny Wong, Rory Pilgrim, Akib Uddin, Greg Corrado, Lily Peng, Katherine Chou, Daniel Tse, Jeffrey S. A. Stringer, Shravya Shetty
Using a simplified sweep protocol with real-time AI feedback on sweep quality, we have demonstrated the generalization of model performance to minimally trained novice ultrasound operators using low cost ultrasound devices with on-device AI integration.
no code implementations • 16 May 2021 • Sahar Kazemzadeh, Jin Yu, Shahar Jamshy, Rory Pilgrim, Zaid Nabulsi, Christina Chen, Neeral Beladia, Charles Lau, Scott Mayer McKinney, Thad Hughes, Atilla Kiraly, Sreenivasa Raju Kalidindi, Monde Muyoyeta, Jameson Malemela, Ting Shih, Greg S. Corrado, Lily Peng, Katherine Chou, Po-Hsuan Cameron Chen, Yun Liu, Krish Eswaran, Daniel Tse, Shravya Shetty, Shruthi Prabhakara
Tuberculosis (TB) is a top-10 cause of death worldwide.
no code implementations • 23 Nov 2020 • Boris Babenko, Akinori Mitani, Ilana Traynis, Naho Kitade, Preeti Singh, April Maa, Jorge Cuadros, Greg S. Corrado, Lily Peng, Dale R. Webster, Avinash Varadarajan, Naama Hammel, Yun Liu
In validation set A (n=27, 415 patients, all undilated), the DLS detected poor blood glucose control (HbA1c > 9%) with an area under receiver operating characteristic curve (AUC) of 70. 2; moderate-or-worse DR with an AUC of 75. 3; diabetic macular edema with an AUC of 78. 0; and vision-threatening DR with an AUC of 79. 4.
no code implementations • 22 Oct 2020 • Zaid Nabulsi, Andrew Sellergren, Shahar Jamshy, Charles Lau, Edward Santos, Atilla P. Kiraly, Wenxing Ye, Jie Yang, Rory Pilgrim, Sahar Kazemzadeh, Jin Yu, Sreenivasa Raju Kalidindi, Mozziyar Etemadi, Florencia Garcia-Vicente, David Melnick, Greg S. Corrado, Lily Peng, Krish Eswaran, Daniel Tse, Neeral Beladia, Yun Liu, Po-Hsuan Cameron Chen, Shravya Shetty
To assess generalizability, we evaluated our system using 6 international datasets from India, China, and the United States.
no code implementations • 10 Aug 2020 • Ashish Bora, Siva Balasubramanian, Boris Babenko, Sunny Virmani, Subhashini Venugopalan, Akinori Mitani, Guilherme de Oliveira Marinho, Jorge Cuadros, Paisan Ruamviboonsuk, Greg S. Corrado, Lily Peng, Dale R. Webster, Avinash V. Varadarajan, Naama Hammel, Yun Liu, Pinal Bavishi
We created and validated two versions of a deep learning system (DLS) to predict the development of mild-or-worse ("Mild+") DR in diabetic patients undergoing DR screening.
1 code implementation • 10 Jul 2020 • Arunachalam Narayanaswamy, Subhashini Venugopalan, Dale R. Webster, Lily Peng, Greg Corrado, Paisan Ruamviboonsuk, Pinal Bavishi, Rory Sayres, Abigail Huang, Siva Balasubramanian, Michael Brenner, Philip Nelson, Avinash V. Varadarajan
Model explanation techniques play a critical role in understanding the source of a model's performance and making its decisions transparent.
no code implementations • 12 Apr 2019 • Akinori Mitani, Yun Liu, Abigail Huang, Greg S. Corrado, Lily Peng, Dale R. Webster, Naama Hammel, Avinash V. Varadarajan
Despite its high prevalence, anemia is often undetected due to the invasiveness and cost of screening and diagnostic tests.
no code implementations • 10 Apr 2019 • Boris Babenko, Siva Balasubramanian, Katy E. Blumer, Greg S. Corrado, Lily Peng, Dale R. Webster, Naama Hammel, Avinash V. Varadarajan
For predicting progression specifically from iAMD, the DL algorithm's sensitivity (57+/-6%) was also higher compared to the 9-step grades (36+/-8%) and the 4-category grades (20+/-0%).
no code implementations • 21 Dec 2018 • Sonia Phene, R. Carter Dunn, Naama Hammel, Yun Liu, Jonathan Krause, Naho Kitade, Mike Schaekermann, Rory Sayres, Derek J. Wu, Ashish Bora, Christopher Semturs, Anita Misra, Abigail E. Huang, Arielle Spitze, Felipe A. Medeiros, April Y. Maa, Monica Gandhi, Greg S. Corrado, Lily Peng, Dale R. Webster
An algorithm trained on fundus images alone can detect referable GON with higher sensitivity than and comparable specificity to eye care providers.
no code implementations • 18 Oct 2018 • Avinash Varadarajan, Pinal Bavishi, Paisan Raumviboonsuk, Peranut Chotcomwongse, Subhashini Venugopalan, Arunachalam Narayanaswamy, Jorge Cuadros, Kuniyoshi Kanai, George Bresnick, Mongkol Tadarati, Sukhum Silpa-archa, Jirawut Limwattanayingyong, Variya Nganthavee, Joe Ledsam, Pearse A. Keane, Greg S. Corrado, Lily Peng, Dale R. Webster
To improve the accuracy of DME screening, we trained a deep learning model to use color fundus photographs to predict ci-DME.
no code implementations • 18 Oct 2018 • Paisan Raumviboonsuk, Jonathan Krause, Peranut Chotcomwongse, Rory Sayres, Rajiv Raman, Kasumi Widner, Bilson J L Campana, Sonia Phene, Kornwipa Hemarat, Mongkol Tadarati, Sukhum Silpa-Acha, Jirawut Limwattanayingyong, Chetan Rao, Oscar Kuruvilla, Jesse Jung, Jeffrey Tan, Surapong Orprayoon, Chawawat Kangwanwongpaisan, Ramase Sukulmalpaiboon, Chainarong Luengchaichawang, Jitumporn Fuangkaew, Pipat Kongsap, Lamyong Chualinpha, Sarawuth Saree, Srirat Kawinpanitan, Korntip Mitvongsa, Siriporn Lawanasakol, Chaiyasit Thepchatri, Lalita Wongpichedchai, Greg S. Corrado, Lily Peng, Dale R. Webster
Deep learning algorithms have been used to detect diabetic retinopathy (DR) with specialist-level accuracy.
no code implementations • 21 Dec 2017 • Avinash V. Varadarajan, Ryan Poplin, Katy Blumer, Christof Angermueller, Joe Ledsam, Reena Chopra, Pearse A. Keane, Greg S. Corrado, Lily Peng, Dale R. Webster
Mean absolute error (MAE) of the algorithm's prediction compared to the refractive error obtained in the AREDS and UK Biobank.
no code implementations • 4 Oct 2017 • Jonathan Krause, Varun Gulshan, Ehsan Rahimy, Peter Karth, Kasumi Widner, Greg S. Corrado, Lily Peng, Dale R. Webster
Diabetic retinopathy (DR) and diabetic macular edema are common complications of diabetes which can lead to vision loss.
no code implementations • 31 Aug 2017 • Ryan Poplin, Avinash V. Varadarajan, Katy Blumer, Yun Liu, Michael V. McConnell, Greg S. Corrado, Lily Peng, Dale R. Webster
Traditionally, medical discoveries are made by observing associations and then designing experiments to test these hypotheses.
6 code implementations • 3 Mar 2017 • Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E. Dahl, Timo Kohlberger, Aleksey Boyko, Subhashini Venugopalan, Aleksei Timofeev, Philip Q. Nelson, Greg S. Corrado, Jason D. Hipp, Lily Peng, Martin C. Stumpe
At 8 false positives per image, we detect 92. 4% of the tumors, relative to 82. 7% by the previous best automated approach.
Ranked #2 on Medical Object Detection on Barrett’s Esophagus