Search Results for author: Lin Gui

Found 64 papers, 31 papers with code

JointCL: A Joint Contrastive Learning Framework for Zero-Shot Stance Detection

1 code implementation ACL 2022 Bin Liang, Qinglin Zhu, Xiang Li, Min Yang, Lin Gui, Yulan He, Ruifeng Xu

In this paper, we propose a joint contrastive learning (JointCL) framework, which consists of stance contrastive learning and target-aware prototypical graph contrastive learning.

Contrastive Learning Zero-Shot Stance Detection

Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge

2 code implementations EMNLP 2021 Bin Liang, Hang Su, Rongdi Yin, Lin Gui, Min Yang, Qin Zhao, Xiaoqi Yu, Ruifeng Xu

To be specific, we first regard each aspect as a pivot to derive aspect-aware words that are highly related to the aspect from external affective commonsense knowledge.

Aspect Category Sentiment Analysis graph construction +1

Multi-Modal Sarcasm Detection via Cross-Modal Graph Convolutional Network

1 code implementation ACL 2022 Bin Liang, Chenwei Lou, Xiang Li, Min Yang, Lin Gui, Yulan He, Wenjie Pei, Ruifeng Xu

Then, the descriptions of the objects are served as a bridge to determine the importance of the association between the objects of image modality and the contextual words of text modality, so as to build a cross-modal graph for each multi-modal instance.

Sarcasm Detection

Recent Trends of Multimodal Affective Computing: A Survey from NLP Perspective

1 code implementation11 Sep 2024 Guimin Hu, Yi Xin, Weimin Lyu, Haojian Huang, Chang Sun, Zhihong Zhu, Lin Gui, Ruichu Cai

The goal of this survey is to explore the current landscape of multimodal affective research, identify development trends, and highlight the similarities and differences across various tasks, offering a comprehensive report on the recent progress in multimodal affective computing from an NLP perspective.

Aspect-Based Sentiment Analysis Emotion Recognition in Conversation +2

Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems

1 code implementation26 Jun 2024 Italo Luis da Silva, Hanqi Yan, Lin Gui, Yulan He

The inherent ambiguity of cause and effect boundaries poses a challenge in evaluating causal event extraction tasks.

Event Causality Identification

Encourage or Inhibit Monosemanticity? Revisit Monosemanticity from a Feature Decorrelation Perspective

no code implementations25 Jun 2024 Hanqi Yan, Yanzheng Xiang, Guangyi Chen, Yifei Wang, Lin Gui, Yulan He

Consequently, we apply feature correlation as a proxy for monosemanticity and incorporate a feature decorrelation regularizer into the dynamic preference optimization process.

Diversity Feature Correlation

Multi-Layer Ranking with Large Language Models for News Source Recommendation

no code implementations17 Jun 2024 Wenjia Zhang, Lin Gui, Rob Procter, Yulan He

To seek reliable information sources for news events, we introduce a novel task of expert recommendation, which aims to identify trustworthy sources based on their previously quoted statements.

In-Context Learning Recommendation Systems +1

BoNBoN Alignment for Large Language Models and the Sweetness of Best-of-n Sampling

no code implementations2 Jun 2024 Lin Gui, Cristina Gârbacea, Victor Veitch

To answer this, we embed both the best-of-$n$ distribution and the sampling distributions learned by alignment procedures in a common class of tiltings of the base LLM distribution.

PLAYER*: Enhancing LLM-based Multi-Agent Communication and Interaction in Murder Mystery Games

1 code implementation26 Apr 2024 Qinglin Zhu, Runcong Zhao, Jinhua Du, Lin Gui, Yulan He

We propose PLAYER*, a novel framework that addresses the limitations of existing agent-based approaches built on Large Language Models (LLMs) in handling complex questions and understanding interpersonal relationships in dynamic environments.

Multiple-choice Navigate

Counterfactual Generation with Identifiability Guarantees

1 code implementation NeurIPS 2023 Hanqi Yan, Lingjing Kong, Lin Gui, Yuejie Chi, Eric Xing, Yulan He, Kun Zhang

In this work, we tackle the domain-varying dependence between the content and the style variables inherent in the counterfactual generation task.

counterfactual Style Transfer +1

Addressing Order Sensitivity of In-Context Demonstration Examples in Causal Language Models

1 code implementation23 Feb 2024 Yanzheng Xiang, Hanqi Yan, Lin Gui, Yulan He

This approach utilizes contrastive learning to align representations of in-context examples across different positions and introduces a consistency loss to ensure similar representations for inputs with different permutations.

Attribute Contrastive Learning +1

COPR: Continual Human Preference Learning via Optimal Policy Regularization

no code implementations22 Feb 2024 Han Zhang, Lin Gui, Yu Lei, Yuanzhao Zhai, Yehong Zhang, Yulan He, Hui Wang, Yue Yu, Kam-Fai Wong, Bin Liang, Ruifeng Xu

Reinforcement Learning from Human Feedback (RLHF) is commonly utilized to improve the alignment of Large Language Models (LLMs) with human preferences.

Continual Learning

Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond

no code implementations22 Feb 2024 Xinyu Wang, Hainiu Xu, Lin Gui, Yulan He

Task embedding, a meta-learning technique that captures task-specific information, has gained popularity, especially in areas such as multi-task learning, model editing, and interpretability.

Meta-Learning Model Editing +1

Multi-modal Stance Detection: New Datasets and Model

1 code implementation22 Feb 2024 Bin Liang, Ang Li, Jingqian Zhao, Lin Gui, Min Yang, Yue Yu, Kam-Fai Wong, Ruifeng Xu

Stance detection is a challenging task that aims to identify public opinion from social media platforms with respect to specific targets.

Stance Detection

Mirror: A Multiple-perspective Self-Reflection Method for Knowledge-rich Reasoning

1 code implementation22 Feb 2024 Hanqi Yan, Qinglin Zhu, Xinyu Wang, Lin Gui, Yulan He

While Large language models (LLMs) have the capability to iteratively reflect on their own outputs, recent studies have observed their struggles with knowledge-rich problems without access to external resources.

Diversity

Large Language Models Fall Short: Understanding Complex Relationships in Detective Narratives

no code implementations16 Feb 2024 Runcong Zhao, Qinglin Zhu, Hainiu Xu, Jiazheng Li, Yuxiang Zhou, Yulan He, Lin Gui

Existing datasets for narrative understanding often fail to represent the complexity and uncertainty of relationships in real-life social scenarios.

CPPO: Continual Learning for Reinforcement Learning with Human Feedback

no code implementations Conference 2024 Han Zhang, Yu Lei, Lin Gui, Min Yang, Yulan He, Hui Wang, Ruifeng Xu

The approach of Reinforcement Learning from Human Feedback (RLHF) is widely used for enhancing pre-trained Language Models (LM), enabling them to better align with human preferences.

Continual Learning reinforcement-learning

Reconfigurable Intelligent Surface Deployment for Wideband Millimeter Wave Systems

no code implementations28 Dec 2023 Xiaohao Mo, Lin Gui, Kai Ying, Xichao Sang, Xiaqing Diao

The performance of wireless communication systems is fundamentally constrained by random and uncontrollable wireless channels.

The Mystery of In-Context Learning: A Comprehensive Survey on Interpretation and Analysis

no code implementations1 Nov 2023 Yuxiang Zhou, Jiazheng Li, Yanzheng Xiang, Hanqi Yan, Lin Gui, Yulan He

Understanding in-context learning (ICL) capability that enables large language models (LLMs) to excel in proficiency through demonstration examples is of utmost importance.

In-Context Learning

Are NLP Models Good at Tracing Thoughts: An Overview of Narrative Understanding

no code implementations28 Oct 2023 Lixing Zhu, Runcong Zhao, Lin Gui, Yulan He

Narrative understanding involves capturing the author's cognitive processes, providing insights into their knowledge, intentions, beliefs, and desires.

Retrieval

A Scalable Framework for Table of Contents Extraction from Complex ESG Annual Reports

no code implementations27 Oct 2023 Xinyu Wang, Lin Gui, Yulan He

Table of contents (ToC) extraction centres on structuring documents in a hierarchical manner.

COPR: Continual Learning Human Preference through Optimal Policy Regularization

no code implementations24 Oct 2023 Han Zhang, Lin Gui, Yuanzhao Zhai, Hui Wang, Yu Lei, Ruifeng Xu

The technique of Reinforcement Learning from Human Feedback (RLHF) is a commonly employed method to improve pre-trained Language Models (LM), enhancing their ability to conform to human preferences.

Continual Learning reinforcement-learning

NarrativePlay: Interactive Narrative Understanding

no code implementations2 Oct 2023 Runcong Zhao, Wenjia Zhang, Jiazheng Li, Lixing Zhu, Yanran Li, Yulan He, Lin Gui

In this paper, we introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives such as novels in an immersive environment.

Document-Level Multi-Event Extraction with Event Proxy Nodes and Hausdorff Distance Minimization

no code implementations30 May 2023 Xinyu Wang, Lin Gui, Yulan He

By directly minimizing Hausdorff distance, the model is trained towards the global optimum directly, which improves performance and reduces training time.

Event Extraction

OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning

1 code implementation24 May 2023 Jiazheng Li, Runcong Zhao, Yongxin Yang, Yulan He, Lin Gui

The remarkable performance of pre-trained large language models has revolutionised various natural language processing applications.

Data Augmentation Fact Checking +3

Explainable Recommender with Geometric Information Bottleneck

no code implementations9 May 2023 Hanqi Yan, Lin Gui, Menghan Wang, Kun Zhang, Yulan He

Explainable recommender systems can explain their recommendation decisions, enhancing user trust in the systems.

Explanation Generation Recommendation Systems

Cone: Unsupervised Contrastive Opinion Extraction

1 code implementation8 May 2023 Runcong Zhao, Lin Gui, Yulan He

Contrastive opinion extraction aims to extract a structured summary or key points organised as positive and negative viewpoints towards a common aspect or topic.

Clustering Contrastive Learning +1

Event Knowledge Incorporation with Posterior Regularization for Event-Centric Question Answering

1 code implementation8 May 2023 Junru Lu, Gabriele Pergola, Lin Gui, Yulan He

In particular, we define event-related knowledge constraints based on the event trigger annotations in the QA datasets, and subsequently use them to regularize the posterior answer output probabilities from the backbone pre-trained language models used in the QA setting.

Language Modelling Question Answering +1

NewsQuote: A Dataset Built on Quote Extraction and Attribution for Expert Recommendation in Fact-Checking

1 code implementation5 May 2023 Wenjia Zhang, Lin Gui, Rob Procter, Yulan He

To enhance the ability to find credible evidence in news articles, we propose a novel task of expert recommendation, which aims to identify trustworthy experts on a specific news topic.

Fact Checking Question Answering +1

Heuristics for Vehicle Routing Problem: A Survey and Recent Advances

no code implementations1 Mar 2023 Fei Liu, Chengyu Lu, Lin Gui, Qingfu Zhang, Xialiang Tong, Mingxuan Yuan

Vehicle routing is a well-known optimization research topic with significant practical importance.

PANACEA: An Automated Misinformation Detection System on COVID-19

no code implementations28 Feb 2023 Runcong Zhao, Miguel Arana-Catania, Lixing Zhu, Elena Kochkina, Lin Gui, Arkaitz Zubiaga, Rob Procter, Maria Liakata, Yulan He

In this demo, we introduce a web-based misinformation detection system PANACEA on COVID-19 related claims, which has two modules, fact-checking and rumour detection.

Fact Checking Misinformation +2

Distinguishability Calibration to In-Context Learning

1 code implementation13 Feb 2023 Hongjing Li, Hanqi Yan, Yanran Li, Li Qian, Yulan He, Lin Gui

When using prompt-based learning for text classification, the goal is to use a pre-trained language model (PLM) to predict a missing token in a pre-defined template given an input text, which can be mapped to a class label.

In-Context Learning Language Modelling +3

Concept Algebra for (Score-Based) Text-Controlled Generative Models

1 code implementation NeurIPS 2023 ZiHao Wang, Lin Gui, Jeffrey Negrea, Victor Veitch

This suggests these models have internal representations that encode concepts in a `disentangled' manner.

Tracking Brand-Associated Polarity-Bearing Topics in User Reviews

1 code implementation3 Jan 2023 Runcong Zhao, Lin Gui, Hanqi Yan, Yulan He

Monitoring online customer reviews is important for business organisations to measure customer satisfaction and better manage their reputations.

Meta-Learning

Integrated Communication and Positioning Design in RIS-empowered OFDM System: a Correlation Dispersion Scheme

no code implementations1 Dec 2022 Xichao Sang, Lin Gui, Kai Ying, Xiaqing Diao, Derrick Wing Kwan Ng

The channel frequency responses on pilots (CFROPs) of places of interest are used for online mapping with the offline CFROP database.

Event-Centric Question Answering via Contrastive Learning and Invertible Event Transformation

1 code implementation24 Oct 2022 Junru Lu, Xingwei Tan, Gabriele Pergola, Lin Gui, Yulan He

Our proposed model utilizes an invertible transformation matrix to project semantic vectors of events into a common event embedding space, trained with contrastive learning, and thus naturally inject event semantic knowledge into mainstream QA pipelines.

Contrastive Learning Question Answering +2

Causal Estimation for Text Data with (Apparent) Overlap Violations

no code implementations30 Sep 2022 Lin Gui, Victor Veitch

To estimate a causal effect from observational data, we need to adjust for confounding aspects of the text that affect both the treatment and outcome -- e. g., the topic or writing level of the text.

Attribute Causal Identification +2

Addressing Token Uniformity in Transformers via Singular Value Transformation

1 code implementation24 Aug 2022 Hanqi Yan, Lin Gui, Wenjie Li, Yulan He

In this paper, we propose to use the distribution of singular values of outputs of each transformer layer to characterise the phenomenon of token uniformity and empirically illustrate that a less skewed singular value distribution can alleviate the `token uniformity' problem.

Semantic Textual Similarity

Hierarchical Interpretation of Neural Text Classification

1 code implementation20 Feb 2022 Hanqi Yan, Lin Gui, Yulan He

Neural models developed in NLP however often compose word semantics in a hierarchical manner and text classification requires hierarchical modelling to aggregate local information in order to deal with topic and label shifts more effectively.

text-classification Text Classification

A new neighborhood structure for job shop scheduling problems

no code implementations7 Sep 2021 Jin Xie, Xinyu Li, Liang Gao, Lin Gui

According to the above finding, this paper proposes a new N8 neighborhood structure considering the movement of critical operations within a critical block and the movement of critical operations outside the critical block.

Combinatorial Optimization Job Shop Scheduling +1

Supervised Contrastive Learning for Multimodal Unreliable News Detection in COVID-19 Pandemic

1 code implementation4 Sep 2021 Wenjia Zhang, Lin Gui, Yulan He

Rather, previously published news articles on the similar event could be used to assess the credibility of a news report.

Contrastive Learning

Position Bias Mitigation: A Knowledge-Aware Graph Model for Emotion Cause Extraction

1 code implementation ACL 2021 Hanqi Yan, Lin Gui, Gabriele Pergola, Yulan He

To investigate the degree of reliance of existing ECE models on clause relative positions, we propose a novel strategy to generate adversarial examples in which the relative position information is no longer the indicative feature of cause clauses.

Emotion Cause Extraction Position

Topic-Driven and Knowledge-Aware Transformer for Dialogue Emotion Detection

1 code implementation ACL 2021 Lixing Zhu, Gabriele Pergola, Lin Gui, Deyu Zhou, Yulan He

Emotion detection in dialogues is challenging as it often requires the identification of thematic topics underlying a conversation, the relevant commonsense knowledge, and the intricate transition patterns between the affective states.

Decoder Emotion Recognition in Conversation

Boosting Low-Resource Biomedical QA via Entity-Aware Masking Strategies

no code implementations EACL 2021 Gabriele Pergola, Elena Kochkina, Lin Gui, Maria Liakata, Yulan He

Biomedical question-answering (QA) has gained increased attention for its capability to provide users with high-quality information from a vast scientific literature.

Domain Adaptation Question Answering +1

Adversarial Learning of Poisson Factorisation Model for Gauging Brand Sentiment in User Reviews

no code implementations EACL 2021 Runcong Zhao, Lin Gui, Gabriele Pergola, Yulan He

In this paper, we propose the Brand-Topic Model (BTM) which aims to detect brand-associated polarity-bearing topics from product reviews.

Jointly Learning Aspect-Focused and Inter-Aspect Relations with Graph Convolutional Networks for Aspect Sentiment Analysis

1 code implementation COLING 2020 Bin Liang, Rongdi Yin, Lin Gui, Jiachen Du, Ruifeng Xu

Besides, to interactively extract the inter-aspect relations for the specific aspect, an inter-aspect GCN is adopted to model the representations learned by aspect-focused GCN based on the inter-aspect graph which is constructed by the relative dependencies between the aspect words and other aspects.

Sentence Sentiment Analysis

A Disentangled Adversarial Neural Topic Model for Separating Opinions from Plots in User Reviews

1 code implementation NAACL 2021 Gabriele Pergola, Lin Gui, Yulan He

The flexibility of the inference process in Variational Autoencoders (VAEs) has recently led to revising traditional probabilistic topic models giving rise to Neural Topic Models (NTMs).

Disentanglement Sentiment Analysis +2

TDAM: a Topic-Dependent Attention Model for Sentiment Analysis

no code implementations18 Aug 2019 Gabriele Pergola, Lin Gui, Yulan He

We propose a topic-dependent attention model for sentiment classification and topic extraction.

Classification General Classification +3

Panoptic Studio: A Massively Multiview System for Social Interaction Capture

1 code implementation9 Dec 2016 Hanbyul Joo, Tomas Simon, Xulong Li, Hao liu, Lei Tan, Lin Gui, Sean Banerjee, Timothy Godisart, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, Yaser Sheikh

The core challenges in capturing social interactions are: (1) occlusion is functional and frequent; (2) subtle motion needs to be measured over a space large enough to host a social group; (3) human appearance and configuration variation is immense; and (4) attaching markers to the body may prime the nature of interactions.

Detecting Multiple Replicating Signals using Adaptive Filtering Procedures

1 code implementation11 Oct 2016 Jingshu Wang, Lin Gui, Weijie J. Su, Chiara Sabatti, Art B. Owen

Replicability is a fundamental quality of scientific discoveries: we are interested in those signals that are detectable in different laboratories, study populations, across time etc.

Methodology

Cannot find the paper you are looking for? You can Submit a new open access paper.