no code implementations • 24 Feb 2025 • Zeyuan Chen, Hongyi Xu, Guoxian Song, You Xie, Chenxu Zhang, Xin Chen, Chao Wang, Di Chang, Linjie Luo
As its core, we introduce a unified transformer-diffusion framework, featuring an autoregressive transformer model that synthesize extended and music-synchronized token sequences for 2D body, head and hands poses, which then guide a diffusion model to produce coherent and realistic dance video frames.
1 code implementation • 17 Jan 2025 • Di Chang, Hongyi Xu, You Xie, Yipeng Gao, Zhengfei Kuang, Shengqu Cai, Chenxu Zhang, Guoxian Song, Chao Wang, Yichun Shi, Zeyuan Chen, Shijie Zhou, Linjie Luo, Gordon Wetzstein, Mohammad Soleymani
At the core of our approach is the Dynamics-Adapter, a lightweight module that effectively integrates reference appearance context into the spatial attentions of the diffusion backbone while preserving the capacity of motion modules in synthesizing fluid and intricate dynamic details.
no code implementations • 26 Nov 2024 • Jinqi Xiao, Shen Sang, Tiancheng Zhi, Jing Liu, Qing Yan, Yuqian Zhang, Linjie Luo, Bo Yuan
While LoRA, a popular parameter-efficient method, reduces memory usage, it often suffers from suboptimal performance due to the constraints of low-rank updates.
no code implementations • 20 Nov 2024 • Yimeng Zhang, Tiancheng Zhi, Jing Liu, Shen Sang, Liming Jiang, Qing Yan, Sijia Liu, Linjie Luo
Existing methods suffer from limitations such as the reliance on segmentation models, increased runtime, or a high probability of ID leakage.
no code implementations • 29 Sep 2024 • Zhongcong Xu, Chaoyue Song, Guoxian Song, Jianfeng Zhang, Jun Hao Liew, Hongyi Xu, You Xie, Linjie Luo, Guosheng Lin, Jiashi Feng, Mike Zheng Shou
Although generating reasonable results, existing methods often overlook the need for regional supervision in crucial areas such as the face and hands, and neglect the explicit modeling for motion blur, leading to unrealistic low-quality synthesis.
no code implementations • 29 Jul 2024 • Bowei Chen, Tiancheng Zhi, Peihao Zhu, Shen Sang, Jing Liu, Linjie Luo
Portrait editing is challenging for existing techniques due to difficulties in preserving subject features like identity.
no code implementations • 23 Mar 2024 • You Xie, Hongyi Xu, Guoxian Song, Chao Wang, Yichun Shi, Linjie Luo
We propose X-Portrait, an innovative conditional diffusion model tailored for generating expressive and temporally coherent portrait animation.
no code implementations • 21 Dec 2023 • Chenxu Zhang, Chao Wang, Jianfeng Zhang, Hongyi Xu, Guoxian Song, You Xie, Linjie Luo, Yapeng Tian, Xiaohu Guo, Jiashi Feng
The generation of emotional talking faces from a single portrait image remains a significant challenge.
1 code implementation • CVPR 2024 • Yuming Gu, You Xie, Hongyi Xu, Guoxian Song, Yichun Shi, Di Chang, Jing Yang, Linjie Luo
The rendering view is then manipulated with a novel conditional control module that interprets the camera pose by watching a condition image of a crossed subject from the same view.
1 code implementation • 23 Aug 2023 • Yufeng Yin, Di Chang, Guoxian Song, Shen Sang, Tiancheng Zhi, Jing Liu, Linjie Luo, Mohammad Soleymani
The proposed FG-Net achieves a strong generalization ability for heatmap-based AU detection thanks to the generalizable and semantic-rich features extracted from the pre-trained generative model.
no code implementations • CVPR 2023 • Hongyi Xu, Guoxian Song, Zihang Jiang, Jianfeng Zhang, Yichun Shi, Jing Liu, WanChun Ma, Jiashi Feng, Linjie Luo
We present OmniAvatar, a novel geometry-guided 3D head synthesis model trained from in-the-wild unstructured images that is capable of synthesizing diverse identity-preserved 3D heads with compelling dynamic details under full disentangled control over camera poses, facial expressions, head shapes, articulated neck and jaw poses.
no code implementations • 24 Mar 2023 • Guoxian Song, Hongyi Xu, Jing Liu, Tiancheng Zhi, Yichun Shi, Jianfeng Zhang, Zihang Jiang, Jiashi Feng, Shen Sang, Linjie Luo
Capitalizing on the recent advancement of 3D-aware GAN models, we perform \emph{guided transfer learning} on a pretrained 3D GAN generator to produce multi-view-consistent stylized renderings.
1 code implementation • 23 Mar 2023 • Sizhe An, Hongyi Xu, Yichun Shi, Guoxian Song, Umit Ogras, Linjie Luo
We propose PanoHead, the first 3D-aware generative model that enables high-quality view-consistent image synthesis of full heads in $360^\circ$ with diverse appearance and detailed geometry using only in-the-wild unstructured images for training.
1 code implementation • CVPR 2023 • Sizhe An, Hongyi Xu, Yichun Shi, Guoxian Song, Umit Y. Ogras, Linjie Luo
We propose PanoHead, the first 3D-aware generative model that enables high-quality view-consistent image synthesis of full heads in 360deg with diverse appearance and detailed geometry using only in-the-wild unstructured images for training.
no code implementations • 15 Nov 2022 • Shen Sang, Tiancheng Zhi, Guoxian Song, Minghao Liu, Chunpong Lai, Jing Liu, Xiang Wen, James Davis, Linjie Luo
We propose a novel self-supervised learning framework to create high-quality stylized 3D avatars with a mix of continuous and discrete parameters.
no code implementations • 13 May 2022 • Shuo Cheng, Guoxian Song, Wan-Chun Ma, Chao Wang, Linjie Luo
We present a framework that uses GAN-augmented images to complement certain specific attributes, usually underrepresented, for machine learning model training.
no code implementations • 5 Apr 2022 • Chuanxia Zheng, Guoxian Song, Tat-Jen Cham, Jianfei Cai, Dinh Phung, Linjie Luo
In this work, we present a novel framework for pluralistic image completion that can achieve both high quality and diversity at much faster inference speed.
1 code implementation • ACM Transactions on Graphics 2021 • Guoxian Song, Linjie Luo, Jing Liu, Wan-Chun Ma, Chun-Pong Lai, Chuanxia Zheng, Tat-Jen Cham
While substantial progress has been made in automated stylization, generating high quality stylistic portraits is still a challenge, and even the recent popular Toonify suffers from several artifacts when used on real input images.
no code implementations • 30 Mar 2021 • Yifan Wang, Linjie Luo, Xiaohui Shen, Xing Mei
Recently, significant progress has been made in single-view depth estimation thanks to increasingly large and diverse depth datasets.
1 code implementation • 7 Aug 2020 • Yichao Zhou, Jingwei Huang, Xili Dai, Shichen Liu, Linjie Luo, Zhili Chen, Yi Ma
We present HoliCity, a city-scale 3D dataset with rich structural information.
no code implementations • ICCV 2019 • Xuecheng Nie, Yuncheng Li, Linjie Luo, Ning Zhang, Jiashi Feng
Existing video-based human pose estimation methods extensively apply large networks onto every frame in the video to localize body joints, which suffer high computational cost and hardly meet the low-latency requirement in realistic applications.
Ranked #4 on
2D Human Pose Estimation
on JHMDB (2D poses only)
no code implementations • 16 Aug 2019 • Zhizhong Li, Linjie Luo, Sergey Tulyakov, Qieyun Dai, Derek Hoiem
Our key idea to improve domain adaptation is to introduce a separate anchor task (such as facial landmarks) whose annotations can be obtained at no cost or are already available on both synthetic and real datasets.
1 code implementation • ICCV 2019 • Kyle Olszewski, Sergey Tulyakov, Oliver Woodford, Hao Li, Linjie Luo
We propose a novel approach to performing fine-grained 3D manipulation of image content via a convolutional neural network, which we call the Transformable Bottleneck Network (TBN).
1 code implementation • CVPR 2019 • Zhenpei Yang, Jeffrey Z. Pan, Linjie Luo, Xiaowei Zhou, Kristen Grauman, Qi-Xing Huang
In particular, instead of only performing scene completion from each individual scan, our approach alternates between relative pose estimation and scene completion.
no code implementations • ECCV 2018 • Zeng Huang, Tianye Li, Weikai Chen, Yajie Zhao, Jun Xing, Chloe LeGendre, Linjie Luo, Chongyang Ma, Hao Li
We present a deep learning-based volumetric capture approach for performance capture using a passive and highly sparse multi-view capture system.
no code implementations • 6 Aug 2018 • Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo, Alexander Huth, Etienne Vouga, Qi-Xing Huang
We show a principled way to train this model by combining discriminator losses for both a 3D object arrangement representation and a 2D image-based representation.
1 code implementation • ECCV 2018 • Xingyi Zhou, Arjun Karpur, Linjie Luo, Qi-Xing Huang
Existing methods define semantic keypoints separately for each category with a fixed number of semantic labels in fixed indices.
Ranked #2 on
Keypoint Detection
on Pascal3D+
1 code implementation • ECCV 2018 • Xingyi Zhou, Arjun Karpur, Chuang Gan, Linjie Luo, Qi-Xing Huang
In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image.
no code implementations • 17 Nov 2016 • Shenlong Wang, Linjie Luo, Ning Zhang, Jia Li
We propose AutoScaler, a scale-attention network to explicitly optimize this trade-off in visual correspondence tasks.
no code implementations • CVPR 2013 • Linjie Luo, Cha Zhang, Zhengyou Zhang, Szymon Rusinkiewicz
We propose a novel algorithm to reconstruct the 3D geometry of human hairs in wide-baseline setups using strand-based refinement.