no code implementations • 19 Sep 2024 • Linying Zhang, Stefano Pagani, Jun Zhang, Francesco Regazzoni
Numerical tests in the field of fluid dynamics and solid mechanics demonstrate the effectiveness of the proposed method in accurately predict the solution of PDEs in domains of arbitrary shape.
no code implementations • 3 Mar 2024 • Hyewon Jeong, Sarah Jabbour, Yuzhe Yang, Rahul Thapta, Hussein Mozannar, William Jongwon Han, Nikita Mehandru, Michael Wornow, Vladislav Lialin, Xin Liu, Alejandro Lozano, Jiacheng Zhu, Rafal Dariusz Kocielnik, Keith Harrigian, Haoran Zhang, Edward Lee, Milos Vukadinovic, Aparna Balagopalan, Vincent Jeanselme, Katherine Matton, Ilker Demirel, Jason Fries, Parisa Rashidi, Brett Beaulieu-Jones, Xuhai Orson Xu, Matthew McDermott, Tristan Naumann, Monica Agrawal, Marinka Zitnik, Berk Ustun, Edward Choi, Kristen Yeom, Gamze Gursoy, Marzyeh Ghassemi, Emma Pierson, George Chen, Sanjat Kanjilal, Michael Oberst, Linying Zhang, Harvineet Singh, Tom Hartvigsen, Helen Zhou, Chinasa T. Okolo
The organization of the research roundtables at the conference involved 17 Senior Chairs and 19 Junior Chairs across 11 tables.
no code implementations • 6 Feb 2024 • Chao Pang, Xinzhuo Jiang, Nishanth Parameshwar Pavinkurve, Krishna S. Kalluri, Elise L. Minto, Jason Patterson, Linying Zhang, George Hripcsak, Gamze Gürsoy, Noémie Elhadad, Karthik Natarajan
Synthetic Electronic Health Records (EHR) have emerged as a pivotal tool in advancing healthcare applications and machine learning models, particularly for researchers without direct access to healthcare data.
no code implementations • 21 Nov 2022 • Linying Zhang, Lauren R. Richter, Yixin Wang, Anna Ostropolets, Noemie Elhadad, David M. Blei, George Hripcsak
Healthcare continues to grapple with the persistent issue of treatment disparities, sparking concerns regarding the equitable allocation of treatments in clinical practice.
no code implementations • 3 Apr 2019 • Linying Zhang, Yixin Wang, Anna Ostropolets, Jami J. Mulgrave, David M. Blei, George Hripcsak
To adjust for unobserved confounders, we develop the medical deconfounder, a machine learning algorithm that unbiasedly estimates treatment effects from EHRs.
no code implementations • 31 May 2018 • Omer Gottesman, Fredrik Johansson, Joshua Meier, Jack Dent, Dong-hun Lee, Srivatsan Srinivasan, Linying Zhang, Yi Ding, David Wihl, Xuefeng Peng, Jiayu Yao, Isaac Lage, Christopher Mosch, Li-wei H. Lehman, Matthieu Komorowski, Aldo Faisal, Leo Anthony Celi, David Sontag, Finale Doshi-Velez
Much attention has been devoted recently to the development of machine learning algorithms with the goal of improving treatment policies in healthcare.