no code implementations • 30 Jul 2018 • Katarína Tóthová, Sarah Parisot, Matthew C. H. Lee, Esther Puyol-Antón, Lisa M. Koch, Andrew P. King, Ender Konukoglu, Marc Pollefeys
Surface reconstruction is a vital tool in a wide range of areas of medical image analysis and clinical research.
no code implementations • 12 Jul 2018 • Yigit B. Can, Krishna Chaitanya, Basil Mustafa, Lisa M. Koch, Ender Konukoglu, Christian F. Baumgartner
We find that the networks trained on scribbles suffer from a remarkably small degradation in Dice of only 2. 9% (cardiac) and 4. 5% (prostate) with respect to a network trained on full annotations.
3 code implementations • CVPR 2018 • Christian F. Baumgartner, Lisa M. Koch, Kerem Can Tezcan, Jia Xi Ang, Ender Konukoglu
Attributing the pixels of an input image to a certain category is an important and well-studied problem in computer vision, with applications ranging from weakly supervised localisation to understanding hidden effects in the data.
1 code implementation • 13 Sep 2017 • Christian F. Baumgartner, Lisa M. Koch, Marc Pollefeys, Ender Konukoglu
Accurate segmentation of the heart is an important step towards evaluating cardiac function.
no code implementations • 21 Aug 2017 • Martin Rajchl, Lisa M. Koch, Christian Ledig, Jonathan Passerat-Palmbach, Kazunari Misawa, Kensaku MORI, Daniel Rueckert
To efficiently establish training databases for machine learning methods, collaborative and crowdsourcing platforms have been investigated to collectively tackle the annotation effort.
2 code implementations • 16 Dec 2016 • Christian F. Baumgartner, Konstantinos Kamnitsas, Jacqueline Matthew, Tara P. Fletcher, Sandra Smith, Lisa M. Koch, Bernhard Kainz, Daniel Rueckert
In this paper, we propose a novel method based on convolutional neural networks which can automatically detect 13 fetal standard views in freehand 2D ultrasound data as well as provide a localisation of the fetal structures via a bounding box.
no code implementations • 29 Apr 2016 • Lisa M. Koch, Martin Rajchl, Wenjia Bai, Christian F. Baumgartner, Tong Tong, Jonathan Passerat-Palmbach, Paul Aljabar, Daniel Rueckert
Multi-atlas segmentation is a widely used tool in medical image analysis, providing robust and accurate results by learning from annotated atlas datasets.