no code implementations • 24 Jul 2024 • Wenting Zhao, Tanya Goyal, Yu Ying Chiu, Liwei Jiang, Benjamin Newman, Abhilasha Ravichander, Khyathi Chandu, Ronan Le Bras, Claire Cardie, Yuntian Deng, Yejin Choi
While hallucinations of large language models (LLMs) prevail as a major challenge, existing evaluation benchmarks on factuality do not cover the diverse domains of knowledge that the real-world users of LLMs seek information about.
1 code implementation • 26 Jun 2024 • Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang, Bill Yuchen Lin, Nathan Lambert, Yejin Choi, Nouha Dziri
We introduce WildGuard -- an open, light-weight moderation tool for LLM safety that achieves three goals: (1) identifying malicious intent in user prompts, (2) detecting safety risks of model responses, and (3) determining model refusal rate.
1 code implementation • 26 Jun 2024 • Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger, Faeze Brahman, Sachin Kumar, Niloofar Mireshghallah, Ximing Lu, Maarten Sap, Yejin Choi, Nouha Dziri
As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training.
1 code implementation • 16 Apr 2024 • Huihan Li, Liwei Jiang, Jena D. Hwang, Hyunwoo Kim, Sebastin Santy, Taylor Sorensen, Bill Yuchen Lin, Nouha Dziri, Xiang Ren, Yejin Choi
As the utilization of large language models (LLMs) has proliferated world-wide, it is crucial for them to have adequate knowledge and fair representation for diverse global cultures.
no code implementations • 10 Apr 2024 • Yu Ying Chiu, Liwei Jiang, Maria Antoniak, Chan Young Park, Shuyue Stella Li, Mehar Bhatia, Sahithya Ravi, Yulia Tsvetkov, Vered Shwartz, Yejin Choi
Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions, that modern LLMs fail at, in a gamified manner.
1 code implementation • 21 Mar 2024 • Jimin Mun, Liwei Jiang, Jenny Liang, Inyoung Cheong, Nicole DeCario, Yejin Choi, Tadayoshi Kohno, Maarten Sap
General purpose AI, such as ChatGPT, seems to have lowered the barriers for the public to use AI and harness its power.
no code implementations • 20 Mar 2024 • JaeHun Jung, Ximing Lu, Liwei Jiang, Faeze Brahman, Peter West, Pang Wei Koh, Yejin Choi
The current winning recipe for automatic summarization is using proprietary large-scale language models (LLMs) such as ChatGPT as is, or imitation learning from them as teacher models.
1 code implementation • 13 Feb 2024 • Jillian Fisher, Ximing Lu, JaeHun Jung, Liwei Jiang, Zaid Harchaoui, Yejin Choi
The permanence of online content combined with the enhanced authorship identification techniques calls for stronger computational methods to protect the identity and privacy of online authorship when needed, e. g., blind reviews for scientific papers, anonymous online reviews, or anonymous interactions in the mental health forums.
1 code implementation • 7 Feb 2024 • Taylor Sorensen, Jared Moore, Jillian Fisher, Mitchell Gordon, Niloofar Mireshghallah, Christopher Michael Rytting, Andre Ye, Liwei Jiang, Ximing Lu, Nouha Dziri, Tim Althoff, Yejin Choi
We identify and formalize three possible ways to define and operationalize pluralism in AI systems: 1) Overton pluralistic models that present a spectrum of reasonable responses; 2) Steerably pluralistic models that can steer to reflect certain perspectives; and 3) Distributionally pluralistic models that are well-calibrated to a given population in distribution.
no code implementations • 10 Dec 2023 • Peter West, Ronan Le Bras, Taylor Sorensen, Bill Yuchen Lin, Liwei Jiang, Ximing Lu, Khyathi Chandu, Jack Hessel, Ashutosh Baheti, Chandra Bhagavatula, Yejin Choi
We present NovaCOMET, an open commonsense knowledge model, that combines the best aspects of knowledge and general task models.
no code implementations • 31 Oct 2023 • Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman, Linjie Li, Jena D. Hwang, Liwei Jiang, Jillian Fisher, Abhilasha Ravichander, Khyathi Chandu, Benjamin Newman, Pang Wei Koh, Allyson Ettinger, Yejin Choi
Specifically, we propose and test the Generative AI Paradox hypothesis: generative models, having been trained directly to reproduce expert-like outputs, acquire generative capabilities that are not contingent upon -- and can therefore exceed -- their ability to understand those same types of outputs.
no code implementations • 24 Oct 2023 • Kavel Rao, Liwei Jiang, Valentina Pyatkin, Yuling Gu, Niket Tandon, Nouha Dziri, Faeze Brahman, Yejin Choi
From this model we distill a high-quality dataset, \delta-Rules-of-Thumb, of 1. 2M entries of contextualizations and rationales for 115K defeasible moral actions rated highly by human annotators 85. 9% to 99. 8% of the time.
1 code implementation • 16 Oct 2023 • Seungju Han, Junhyeok Kim, Jack Hessel, Liwei Jiang, Jiwan Chung, Yejin Son, Yejin Choi, Youngjae Yu
NORMLENS consists of 10K human judgments accompanied by free-form explanations covering 2K multimodal situations, and serves as a probe to address two questions: (1) to what extent can models align with average human judgment?
1 code implementation • 12 Oct 2023 • Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin Wang, Yoon Kim, Yejin Choi, Nouha Dziri, Xiang Ren
The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence.
1 code implementation • 2 Sep 2023 • Taylor Sorensen, Liwei Jiang, Jena Hwang, Sydney Levine, Valentina Pyatkin, Peter West, Nouha Dziri, Ximing Lu, Kavel Rao, Chandra Bhagavatula, Maarten Sap, John Tasioulas, Yejin Choi
To improve AI systems to better reflect value pluralism, the first-order challenge is to explore the extent to which AI systems can model pluralistic human values, rights, and duties as well as their interaction.
1 code implementation • NeurIPS 2023 • Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, Yejin Choi
We formulate compositional tasks as computation graphs to systematically quantify the level of complexity, and break down reasoning steps into intermediate sub-procedures.
no code implementations • 26 May 2023 • JaeHun Jung, Peter West, Liwei Jiang, Faeze Brahman, Ximing Lu, Jillian Fisher, Taylor Sorensen, Yejin Choi
We present Impossible Distillation, a novel framework for paraphrasing and sentence summarization, that distills a high-quality dataset and model from a low-quality teacher that itself cannot perform these tasks.
1 code implementation • 24 May 2023 • Ximing Lu, Faeze Brahman, Peter West, Jaehun Jang, Khyathi Chandu, Abhilasha Ravichander, Lianhui Qin, Prithviraj Ammanabrolu, Liwei Jiang, Sahana Ramnath, Nouha Dziri, Jillian Fisher, Bill Yuchen Lin, Skyler Hallinan, Xiang Ren, Sean Welleck, Yejin Choi
While extreme-scale language models have demonstrated exceptional performance on a variety of language tasks, the degree of control over these language models through pure prompting can often be limited.
no code implementations • 23 May 2023 • Yiming Zhang, Sravani Nanduri, Liwei Jiang, Tongshuang Wu, Maarten Sap
Toxicity annotators and content moderators often default to mental shortcuts when making decisions.
no code implementations • 16 Jan 2023 • Damek Davis, Dmitriy Drusvyatskiy, Liwei Jiang
In their seminal work, Polyak and Juditsky showed that stochastic approximation algorithms for solving smooth equations enjoy a central limit theorem.
2 code implementations • 20 Dec 2022 • Valentina Pyatkin, Jena D. Hwang, Vivek Srikumar, Ximing Lu, Liwei Jiang, Yejin Choi, Chandra Bhagavatula
Context is everything, even in commonsense moral reasoning.
1 code implementation • 20 Dec 2022 • Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West, Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Le Bras, Malihe Alikhani, Gunhee Kim, Maarten Sap, Yejin Choi
Data scarcity has been a long standing issue in the field of open-domain social dialogue.
no code implementations • 21 Sep 2022 • Lijun Ding, Zhen Qin, Liwei Jiang, Jinxin Zhou, Zhihui Zhu
In this paper, we study the problem of recovering a low-rank matrix from a number of noisy random linear measurements.
1 code implementation • 26 May 2022 • Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Ammanabrolu, Yejin Choi
Large-scale language models often learn behaviors that are misaligned with user expectations.
1 code implementation • 25 May 2022 • Hyunwoo Kim, Youngjae Yu, Liwei Jiang, Ximing Lu, Daniel Khashabi, Gunhee Kim, Yejin Choi, Maarten Sap
With this dataset, we introduce a dialogue safety detection module, Canary, capable of generating RoTs given conversational context, and a socially-informed dialogue agent, Prost.
Ranked #1 on Dialogue Safety Prediction on ProsocialDialog
no code implementations • NAACL 2022 • Prithviraj Ammanabrolu, Liwei Jiang, Maarten Sap, Hannaneh Hajishirzi, Yejin Choi
We focus on creating agents that act in alignment with socially beneficial norms and values in interactive narratives or text-based games -- environments wherein an agent perceives and interacts with a world through natural language.
no code implementations • 6 Mar 2022 • Liwei Jiang, Yudong Chen, Lijun Ding
We study the asymmetric matrix factorization problem under a natural nonconvex formulation with arbitrary overparametrization.
1 code implementation • NAACL 2022 • Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, Yejin Choi
To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction.
Ranked #1 on Text Generation on ROCStories
1 code implementation • 14 Oct 2021 • Liwei Jiang, Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jenny Liang, Jesse Dodge, Keisuke Sakaguchi, Maxwell Forbes, Jon Borchardt, Saadia Gabriel, Yulia Tsvetkov, Oren Etzioni, Maarten Sap, Regina Rini, Yejin Choi
As AI systems become increasingly powerful and pervasive, there are growing concerns about machines' morality or a lack thereof.
1 code implementation • NAACL 2022 • Peter West, Chandra Bhagavatula, Jack Hessel, Jena D. Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu, Sean Welleck, Yejin Choi
We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.
no code implementations • NeurIPS 2021 • Lijun Ding, Liwei Jiang, Yudong Chen, Qing Qu, Zhihui Zhu
We study the robust recovery of a low-rank matrix from sparsely and grossly corrupted Gaussian measurements, with no prior knowledge on the intrinsic rank.
no code implementations • 26 Aug 2021 • Damek Davis, Dmitriy Drusvyatskiy, Liwei Jiang
We show that the subgradient method converges only to local minimizers when applied to generic Lipschitz continuous and subdifferentially regular functions that are definable in an o-minimal structure.
no code implementations • NAACL 2021 • Liwei Jiang, Antoine Bosselut, Chandra Bhagavatula, Yejin Choi
In this paper, we present the first comprehensive study focusing on commonsense implications of negated statements and contradictions.
no code implementations • 13 Apr 2021 • Liwei Jiang, Antoine Bosselut, Chandra Bhagavatula, Yejin Choi
In this paper, we present the first comprehensive study focusing on commonsense implications of negated statements and contradictions.
no code implementations • 1 Jan 2021 • Shangchuan Huang, Songtao Wang, Dan Li, Liwei Jiang
Recent works try to recover the unbiased result by estimating the proportion of positive samples with mixture proportion estimation (MPE) algorithms, but the model performance is still limited and heavy computational cost is introduced (particularly for big datasets).
no code implementations • 21 Apr 2020 • Liwei Jiang, Dan Li, Qisheng Wang, Shuai Wang, Songtao Wang
Secondly, we propose ProbTagging, a new training method for extremely imbalanced data sets, where the number of unlabeled samples is hundreds or thousands of times that of positive samples.