1 code implementation • 19 Jun 2024 • Matéo Mahaut, Laura Aina, Paula Czarnowska, Momchil Hardalov, Thomas Müller, Lluís Màrquez
Our experiments across a series of LLMs indicate that trained hidden-state probes provide the most reliable confidence estimates, albeit at the expense of requiring access to weights and training data.
1 code implementation • 14 Jun 2022 • Chandan K. Reddy, Lluís Màrquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopadhyay, Arnab Biswas, Anlu Xing, Karthik Subbian
This paper introduces the "Shopping Queries Dataset", a large dataset of difficult Amazon search queries and results, publicly released with the aim of fostering research in improving the quality of search results.
1 code implementation • 3 May 2020 • Cristina España-Bonet, Alberto Barrón-Cedeño, Lluís Màrquez
Our best metric for domainness shows a strong correlation with the human-judged precision, representing a reasonable automatic alternative to assess the quality of domain-specific corpora.
no code implementations • 14 Dec 2019 • Pepa Gencheva, Ivan Koychev, Lluís Màrquez, Alberto Barrón-Cedeño, Preslav Nakov
In the context of investigative journalism, we address the problem of automatically identifying which claims in a given document are most worthy and should be prioritized for fact-checking.
no code implementations • ACL 2016 • Francisco Guzmán, Lluís Màrquez, Preslav Nakov
We explore the applicability of machine translation evaluation (MTE) methods to a very different problem: answer ranking in community Question Answering.
no code implementations • SEMEVAL 2016 • Preslav Nakov, Lluís Màrquez, Alessandro Moschitti, Walid Magdy, Hamdy Mubarak, Abed Alhakim Freihat, James Glass, Bilal Randeree
This paper describes the SemEval--2016 Task 3 on Community Question Answering, which we offered in English and Arabic.
1 code implementation • SEMEVAL 2017 • Preslav Nakov, Doris Hoogeveen, Lluís Màrquez, Alessandro Moschitti, Hamdy Mubarak, Timothy Baldwin, Karin Verspoor
We describe SemEval-2017 Task 3 on Community Question Answering.
no code implementations • SEMEVAL 2015 • Preslav Nakov, Lluís Màrquez, Walid Magdy, Alessandro Moschitti, James Glass, Bilal Randeree
Community Question Answering (cQA) provides new interesting research directions to the traditional Question Answering (QA) field, e. g., the exploitation of the interaction between users and the structure of related posts.
no code implementations • EMNLP 2015 • Shafiq Joty, Alberto Barrón-Cedeño, Giovanni Da San Martino, Simone Filice, Lluís Màrquez, Alessandro Moschitti, Preslav Nakov
Community question answering, a recent evolution of question answering in the Web context, allows a user to quickly consult the opinion of a number of people on a particular topic, thus taking advantage of the wisdom of the crowd.
no code implementations • 2 Oct 2019 • Stefanos Angelidis, Lea Frermann, Diego Marcheggiani, Roi Blanco, Lluís Màrquez
We present a system for answering questions based on the full text of books (BookQA), which first selects book passages given a question at hand, and then uses a memory network to reason and predict an answer.
no code implementations • RANLP 2019 • Slavena Vasileva, Pepa Atanasova, Lluís Màrquez, Alberto Barrón-Cedeño, Preslav Nakov
We propose a multi-task deep-learning approach for estimating the check-worthiness of claims in political debates.
1 code implementation • 4 Aug 2019 • Pepa Atanasova, Preslav Nakov, Lluís Màrquez, Alberto Barrón-Cedeño, Georgi Karadzhov, Tsvetomila Mihaylova, Mitra Mohtarami, James Glass
We study the problem of automatic fact-checking, paying special attention to the impact of contextual and discourse information.
1 code implementation • IJCNLP 2017 • Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, James Glass
In this paper, we investigate the representations learned at different layers of NMT encoders.
no code implementations • 5 Oct 2017 • Francisco Guzmán, Shafiq R. Joty, Lluís Màrquez, Preslav Nakov
We present a framework for machine translation evaluation using neural networks in a pairwise setting, where the goal is to select the better translation from a pair of hypotheses, given the reference translation.
no code implementations • CL 2017 • Shafiq Joty, Francisco Guzmán, Lluís Màrquez, Preslav Nakov
In this article, we explore the potential of using sentence-level discourse structure for machine translation evaluation.
no code implementations • 21 Jun 2017 • Shafiq Joty, Preslav Nakov, Lluís Màrquez, Israa Jaradat
We address the problem of cross-language adaptation for question-question similarity reranking in community question answering, with the objective to port a system trained on one input language to another input language given labeled training data for the first language and only unlabeled data for the second language.