no code implementations • 29 Jul 2024 • Maxime Seince, Loic Le Folgoc, Luiz Augusto Facury de Souza, Elsa Angelini
The time, cost and expertise required to label images at the pixel-level for each new task has slowed down widespread adoption of the paradigm.
no code implementations • 8 Oct 2021 • Loic Le Folgoc, Vasileios Baltatzis, Sujal Desai, Anand Devaraj, Sam Ellis, Octavio E. Martinez Manzanera, Arjun Nair, Huaqi Qiu, Julia Schnabel, Ben Glocker
We question the properties of MC Dropout for approximate inference, as in fact MC Dropout changes the Bayesian model; its predictive posterior assigns $0$ probability to the true model on closed-form benchmarks; the multimodality of its predictive posterior is not a property of the true predictive posterior but a design artefact.
no code implementations • 11 Aug 2021 • Vasileios Baltatzis, Kyriaki-Margarita Bintsi, Loic Le Folgoc, Octavio E. Martinez Manzanera, Sam Ellis, Arjun Nair, Sujal Desai, Ben Glocker, Julia A. Schnabel
Using publicly available data to determine the performance of methodological contributions is important as it facilitates reproducibility and allows scrutiny of the published results.
no code implementations • 10 Aug 2021 • Vasileios Baltatzis, Loic Le Folgoc, Sam Ellis, Octavio E. Martinez Manzanera, Kyriaki-Margarita Bintsi, Arjun Nair, Sujal Desai, Ben Glocker, Julia A. Schnabel
Convolutional Neural Networks (CNNs) are widely used for image classification in a variety of fields, including medical imaging.
no code implementations • 31 Jul 2021 • Loic Le Folgoc, Vasileios Baltatzis, Amir Alansary, Sujal Desai, Anand Devaraj, Sam Ellis, Octavio E. Martinez Manzanera, Fahdi Kanavati, Arjun Nair, Julia Schnabel, Ben Glocker
This mismatch is known as sampling bias.
1 code implementation • 13 Aug 2020 • Vitalis Vosylius, Andy Wang, Cemlyn Waters, Alexey Zakharov, Francis Ward, Loic Le Folgoc, John Cupitt, Antonios Makropoulos, Andreas Schuh, Daniel Rueckert, Amir Alansary
In this paper, we propose a novel approach to predict the post-menstrual age (PA) at scan, using techniques from geometric deep learning, based on the neonatal white matter cortical surface.
1 code implementation • 28 Jun 2019 • Carlo Biffi, Juan J. Cerrolaza, Giacomo Tarroni, Wenjia Bai, Antonio de Marvao, Ozan Oktay, Christian Ledig, Loic Le Folgoc, Konstantinos Kamnitsas, Georgia Doumou, Jinming Duan, Sanjay K. Prasad, Stuart A. Cook, Declan P. O'Regan, Daniel Rueckert
At the highest level of this hierarchy, a two-dimensional latent space is simultaneously optimised to discriminate distinct clinical conditions, enabling the direct visualisation of the classification space.
no code implementations • 8 Jun 2018 • Amir Alansary, Loic Le Folgoc, Ghislain Vaillant, Ozan Oktay, Yuanwei Li, Wenjia Bai, Jonathan Passerat-Palmbach, Ricardo Guerrero, Konstantinos Kamnitsas, Benjamin Hou, Steven McDonagh, Ben Glocker, Bernhard Kainz, Daniel Rueckert
Navigating through target anatomy to find the required view plane is tedious and operator-dependent.
no code implementations • ICML 2018 • Konstantinos Kamnitsas, Daniel C. Castro, Loic Le Folgoc, Ian Walker, Ryutaro Tanno, Daniel Rueckert, Ben Glocker, Antonio Criminisi, Aditya Nori
We present a novel cost function for semi-supervised learning of neural networks that encourages compact clustering of the latent space to facilitate separation.
37 code implementations • 11 Apr 2018 • Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven McDonagh, Nils Y. Hammerla, Bernhard Kainz, Ben Glocker, Daniel Rueckert
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes.
Ranked #1 on
Pancreas Segmentation
on CT-150