Search Results for author: Long Phi Le

Found 8 papers, 5 papers with code

AI-driven 3D Spatial Transcriptomics

no code implementations25 Feb 2025 Cristina Almagro-Pérez, Andrew H. Song, Luca Weishaupt, Ahrong Kim, Guillaume Jaume, Drew F. K. Williamson, Konstantin Hemker, Ming Y. Lu, Kritika Singh, Bowen Chen, Long Phi Le, Alexander S. Baras, Sizun Jiang, Ali Bashashati, Jonathan T. C. Liu, Faisal Mahmood

A comprehensive three-dimensional (3D) map of tissue architecture and gene expression is crucial for illuminating the complexity and heterogeneity of tissues across diverse biomedical applications.

Molecular-driven Foundation Model for Oncologic Pathology

2 code implementations28 Jan 2025 Anurag Vaidya, Andrew Zhang, Guillaume Jaume, Andrew H. Song, Tong Ding, Sophia J. Wagner, Ming Y. Lu, Paul Doucet, Harry Robertson, Cristina Almagro-Perez, Richard J. Chen, Dina ElHarouni, Georges Ayoub, Connor Bossi, Keith L. Ligon, Georg Gerber, Long Phi Le, Faisal Mahmood

Foundation models are reshaping computational pathology by enabling transfer learning, where models pre-trained on vast datasets can be adapted for downstream diagnostic, prognostic, and therapeutic response tasks.

Benchmarking Diagnostic +4

Multimodal Whole Slide Foundation Model for Pathology

2 code implementations29 Nov 2024 Tong Ding, Sophia J. Wagner, Andrew H. Song, Richard J. Chen, Ming Y. Lu, Andrew Zhang, Anurag J. Vaidya, Guillaume Jaume, Muhammad Shaban, Ahrong Kim, Drew F. K. Williamson, Bowen Chen, Cristina Almagro-Perez, Paul Doucet, Sharifa Sahai, Chengkuan Chen, Daisuke Komura, Akihiro Kawabe, Shumpei Ishikawa, Georg Gerber, Tingying Peng, Long Phi Le, Faisal Mahmood

The field of computational pathology has been transformed with recent advances in foundation models that encode histopathology region-of-interests (ROIs) into versatile and transferable feature representations via self-supervised learning (SSL).

Cross-Modal Retrieval model +4

Multistain Pretraining for Slide Representation Learning in Pathology

1 code implementation5 Aug 2024 Guillaume Jaume, Anurag Vaidya, Andrew Zhang, Andrew H. Song, Richard J. Chen, Sharifa Sahai, Dandan Mo, Emilio Madrigal, Long Phi Le, Faisal Mahmood

Existing approaches for slide representation learning extend the principles of SSL from small images (e. g., 224 x 224 patches) to entire slides, usually by aligning two different augmentations (or views) of the slide.

Representation Learning Self-Supervised Learning +1

A Foundational Multimodal Vision Language AI Assistant for Human Pathology

no code implementations13 Dec 2023 Ming Y. Lu, Bowen Chen, Drew F. K. Williamson, Richard J. Chen, Kenji Ikamura, Georg Gerber, Ivy Liang, Long Phi Le, Tong Ding, Anil V Parwani, Faisal Mahmood

We compare PathChat against several multimodal vision language AI assistants as well as GPT4V, which powers the commercially available multimodal general purpose AI assistant ChatGPT-4.

Decision Making Diagnostic +3

Towards a Visual-Language Foundation Model for Computational Pathology

no code implementations24 Jul 2023 Ming Y. Lu, Bowen Chen, Drew F. K. Williamson, Richard J. Chen, Ivy Liang, Tong Ding, Guillaume Jaume, Igor Odintsov, Andrew Zhang, Long Phi Le, Georg Gerber, Anil V Parwani, Faisal Mahmood

The accelerated adoption of digital pathology and advances in deep learning have enabled the development of powerful models for various pathology tasks across a diverse array of diseases and patient cohorts.

Contrastive Learning Image Classification +3

Visual Language Pretrained Multiple Instance Zero-Shot Transfer for Histopathology Images

1 code implementation CVPR 2023 Ming Y. Lu, Bowen Chen, Andrew Zhang, Drew F. K. Williamson, Richard J. Chen, Tong Ding, Long Phi Le, Yung-Sung Chuang, Faisal Mahmood

In this paper we present MI-Zero, a simple and intuitive framework for unleashing the zero-shot transfer capabilities of contrastively aligned image and text models on gigapixel histopathology whole slide images, enabling multiple downstream diagnostic tasks to be carried out by pretrained encoders without requiring any additional labels.

Diagnostic Multiple Instance Learning +1

Cannot find the paper you are looking for? You can Submit a new open access paper.