no code implementations • 17 Sep 2024 • Alessandro Simoni, Francesco Marchetti, Guido Borghi, Federico Becattini, Davide Davoli, Lorenzo Garattoni, Gianpiero Francesca, Lorenzo Seidenari, Roberto Vezzani
Despite the recent advances in computer vision research, estimating the 3D human pose from single RGB images remains a challenging task, as multiple 3D poses can correspond to the same 2D projection on the image.
no code implementations • CVPR 2024 • HyunJun Jung, Shun-Cheng Wu, Patrick Ruhkamp, Guangyao Zhai, Hannah Schieber, Giulia Rizzoli, Pengyuan Wang, Hongcheng Zhao, Lorenzo Garattoni, Sven Meier, Daniel Roth, Nassir Navab, Benjamin Busam
Estimating 6D object poses is a major challenge in 3D computer vision.
no code implementations • 28 Aug 2023 • Di Yang, Yaohui Wang, Antitza Dantcheva, Quan Kong, Lorenzo Garattoni, Gianpiero Francesca, Francois Bremond
In this context, we propose Latent Action Composition (LAC), a novel self-supervised framework aiming at learning from synthesized composable motions for skeleton-based action segmentation.
no code implementations • 10 May 2023 • Di Yang, Yaohui Wang, Quan Kong, Antitza Dantcheva, Lorenzo Garattoni, Gianpiero Francesca, Francois Bremond
Self-supervised video representation learning aimed at maximizing similarity between different temporal segments of one video, in order to enforce feature persistence over time.
no code implementations • 19 Jan 2023 • Snehashis Majhi, Rui Dai, Quan Kong, Lorenzo Garattoni, Gianpiero Francesca, Francois Bremond
Video anomaly detection in surveillance systems with only video-level labels (i. e. weakly-supervised) is challenging.
no code implementations • ICCV 2023 • Di Yang, Yaohui Wang, Antitza Dantcheva, Quan Kong, Lorenzo Garattoni, Gianpiero Francesca, Francois Bremond
In this context, we propose Latent Action Composition (LAC), a novel self-supervised framework aiming at learning from synthesized composable motions for skeleton-based action segmentation.
1 code implementation • 20 Dec 2022 • HyunJun Jung, Guangyao Zhai, Shun-Cheng Wu, Patrick Ruhkamp, Hannah Schieber, Giulia Rizzoli, Pengyuan Wang, Hongcheng Zhao, Lorenzo Garattoni, Sven Meier, Daniel Roth, Nassir Navab, Benjamin Busam
Estimating 6D object poses is a major challenge in 3D computer vision.
1 code implementation • 31 Aug 2022 • Di Yang, Yaohui Wang, Antitza Dantcheva, Lorenzo Garattoni, Gianpiero Francesca, Francois Bremond
Current self-supervised approaches for skeleton action representation learning often focus on constrained scenarios, where videos and skeleton data are recorded in laboratory settings.
no code implementations • CVPR 2022 • Pengyuan Wang, HyunJun Jung, Yitong Li, Siyuan Shen, Rahul Parthasarathy Srikanth, Lorenzo Garattoni, Sven Meier, Nassir Navab, Benjamin Busam
Object pose estimation is crucial for robotic applications and augmented reality.
no code implementations • 6 Dec 2021 • Pengyuan Wang, Fabian Manhardt, Luca Minciullo, Lorenzo Garattoni, Sven Meie, Nassir Navab, Benjamin Busam
We first present a small sequence of RGB-D images displaying a human-object interaction.
1 code implementation • 19 Jul 2021 • Di Yang, Yaohui Wang, Antitza Dantcheva, Lorenzo Garattoni, Gianpiero Francesca, Francois Bremond
This is achieved by learning an optimal dependency matrix from the uniform distribution based on a multi-head attention mechanism.
Ranked #1 on
Skeleton Based Action Recognition
on UPenn Action
1 code implementation • 5 Jan 2021 • Rui Dai, Srijan Das, Luca Minciullo, Lorenzo Garattoni, Gianpiero Francesca, Francois Bremond
Previous action detection methods fail in selecting the key temporal information in long videos.
Ranked #1 on
Action Detection
on TSU
1 code implementation • 28 Oct 2020 • Rui Dai, Srijan Das, Saurav Sharma, Luca Minciullo, Lorenzo Garattoni, Francois Bremond, Gianpiero Francesca
Therefore, we propose a new baseline method for activity detection to tackle the novel challenges provided by our dataset.