Search Results for author: Luca Benini

Found 180 papers, 69 papers with code

Hierarchical Information Flow for Generalized Efficient Image Restoration

no code implementations27 Nov 2024 Yawei Li, Bin Ren, Jingyun Liang, Rakesh Ranjan, Mengyuan Liu, Nicu Sebe, Ming-Hsuan Yang, Luca Benini

To strike a balance between efficiency and model capacity for a generalized transformer-based IR method, we propose a hierarchical information flow mechanism for image restoration, dubbed Hi-IR, which progressively propagates information among pixels in a bottom-up manner.

Computational Efficiency Image Restoration

IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models

1 code implementation29 Oct 2024 Hang Guo, Yawei Li, Tao Dai, Shu-Tao Xia, Luca Benini

Fine-tuning large-scale text-to-image diffusion models for various downstream tasks has yielded impressive results.

parameter-efficient fine-tuning Quantization

PEtra: A Flexible and Open-Source PE Loop Tracer for Polymer Thin-Film Transducers

no code implementations21 Oct 2024 Marc-Andre Wessner, Federico Villani, Sofia Papa, Kirill Keller, Laura Ferrari, Francesco Greco, Luca Benini, Christoph Leitner

Accurate characterization of ferroelectric properties in polymer piezoelectrics is critical for optimizing the performance of flexible and wearable ultrasound transducers, such as screen-printed PVDF devices.

PuLsE: Accurate and Robust Ultrasound-based Continuous Heart-Rate Monitoring on a Wrist-Worn IoT Device

no code implementations21 Oct 2024 Marco Giordano, Christoph Leitner, Christian Vogt, Luca Benini, Michele Magno

We present an IoT wearable system prototype utilizing a commercial microcontroller MCU employing the onboard ADC to capture high frequency US signals and an innovative low-power US pulser.

MATCH: Model-Aware TVM-based Compilation for Heterogeneous Edge Devices

1 code implementation11 Oct 2024 Mohamed Amine Hamdi, Francesco Daghero, Giuseppe Maria Sarda, Josse Van Delm, Arne Symons, Luca Benini, Marian Verhelst, Daniele Jahier Pagliari, Alessio Burrello

To overcome this duality, we introduce MATCH, a novel TVM-based DNN deployment framework designed for easy agile retargeting across different MCU processors and accelerators, thanks to a customizable model-based hardware abstraction.

Accelerating Image-based Pest Detection on a Heterogeneous Multi-core Microcontroller

1 code implementation28 Aug 2024 Luca Bompani, Luca Crupi, Daniele Palossi, Olmo Baldoni, Davide Brunelli, Francesco Conti, Manuele Rusci, Luca Benini

Thanks to the GAP9's CNN accelerator, the CNN inference task takes only 147 ms to process a 320$\times$240 image.

Deeploy: Enabling Energy-Efficient Deployment of Small Language Models On Heterogeneous Microcontrollers

no code implementations8 Aug 2024 Moritz Scherer, Luka Macan, Victor Jung, Philip Wiese, Luca Bompani, Alessio Burrello, Francesco Conti, Luca Benini

With the rise of Embodied Foundation Models (EFMs), most notably Small Language Models (SLMs), adapting Transformers for edge applications has become a very active field of research.

C++ code

Distilling Tiny and Ultra-fast Deep Neural Networks for Autonomous Navigation on Nano-UAVs

1 code implementation17 Jul 2024 Lorenzo Lamberti, Lorenzo Bellone, Luka Macan, Enrico Natalizio, Francesco Conti, Daniele Palossi, Luca Benini

The PULP-Dronet convolutional neural network (CNN) enables autonomous navigation running aboard a nano-UAV at 19 frame/s, at the cost of a large memory footprint of 320 kB -- and with drone control in complex scenarios hindered by the disjoint training of collision avoidance and steering capabilities.

Autonomous Navigation Collision Avoidance

Tiny-PULP-Dronets: Squeezing Neural Networks for Faster and Lighter Inference on Multi-Tasking Autonomous Nano-Drones

1 code implementation2 Jul 2024 Lorenzo Lamberti, Vlad Niculescu, Michał Barcis, Lorenzo Bellone, Enrico Natalizio, Luca Benini, Daniele Palossi

Pocket-sized autonomous nano-drones can revolutionize many robotic use cases, such as visual inspection in narrow, constrained spaces, and ensure safer human-robot interaction due to their tiny form factor and weight -- i. e., tens of grams.

Autonomous Navigation

GAP9Shield: A 150GOPS AI-capable Ultra-low Power Module for Vision and Ranging Applications on Nano-drones

no code implementations27 Jun 2024 Hanna Müller, Victor Kartsch, Luca Benini

The evolution of AI and digital signal processing technologies, combined with affordable energy-efficient processors, has propelled the development of both hardware and software for drone applications.

object-detection Object Detection

Low Latency Visual Inertial Odometry with On-Sensor Accelerated Optical Flow for Resource-Constrained UAVs

no code implementations19 Jun 2024 Jonas Kühne, Michele Magno, Luca Benini

Visual Inertial Odometry (VIO) is the task of estimating the movement trajectory of an agent from an onboard camera stream fused with additional Inertial Measurement Unit (IMU) measurements.

Optical Flow Estimation

GAPses: Versatile smart glasses for comfortable and fully-dry acquisition and parallel ultra-low-power processing of EEG and EOG

no code implementations12 Jun 2024 Sebastian Frey, Mattia Alberto Lucchini, Victor Kartsch, Thorir Mar Ingolfsson, Andrea Helga Bernardi, Michael Segessenmann, Jakub Osieleniec, Simone Benatti, Luca Benini, Andrea Cossettini

Furthermore, we demonstrate an EEG-based biometric subject recognition task, where we reach a sensitivity and specificity of 98. 87% and 99. 86% respectively, with only 8 EEG channels and an energy consumption per inference on the edge as low as 121 uJ.

EEG Specificity

Optimizing Foundation Model Inference on a Many-tiny-core Open-source RISC-V Platform

no code implementations29 May 2024 Viviane Potocnik, Luca Colagrande, Tim Fischer, Luca Bertaccini, Daniele Jahier Pagliari, Alessio Burrello, Luca Benini

For decoder-only topologies, we achieve 16. 1x speedup in the Non-Autoregressive (NAR) mode and up to 35. 6x speedup in the Autoregressive (AR) mode compared to the baseline implementation.

Decoder

xTern: Energy-Efficient Ternary Neural Network Inference on RISC-V-Based Edge Systems

no code implementations29 May 2024 Georg Rutishauser, Joan Mihali, Moritz Scherer, Luca Benini

To complement the ISA extension, we developed a set of optimized kernels leveraging xTern, achieving 67% higher throughput than their 2-bit equivalents.

A Passive and Asynchronous Wake-up Receiver for Acoustic Underwater Communication

no code implementations28 May 2024 Lukas Schulthess, Philipp Mayer, Luca Benini, Michele Magno

Zero-power listening is achieved by combining energy and information transmission using a low-power wake-up receiver that extracts energy out of the acoustic signal and eliminates radio frontend idle consumption.

Modeling and Controlling Many-Core HPC Processors: an Alternative to PID and Moving Average Algorithms

no code implementations28 May 2024 Giovanni Bambini, Alessandro Ottaviano, Christian Conficoni, Andrea Tilli, Luca Benini, Andrea Bartolini

Unfortunately, existing research lacks a detailed analysis and modeling of thermal, power, and electrical coupling effects and how they have to be jointly considered to perform dynamic control of complex and heterogeneous Multi-Processor System on Chips (MPSoCs).

SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models

1 code implementation23 May 2024 Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno, Xiaojuan Qi

Specifically, the proposed SliM-LLM mainly relies on two novel techniques: (1) Salience-Determined Bit Allocation utilizes the clustering characteristics of salience distribution to allocate the bit-widths of each group, increasing the accuracy of quantized LLMs and maintaining the inference efficiency; (2) Salience-Weighted Quantizer Calibration optimizes the parameters of the quantizer by considering the element-wise salience within the group, balancing the maintenance of salient information and minimization of errors.

Natural Language Understanding Quantization

Multi-resolution Rescored ByteTrack for Video Object Detection on Ultra-low-power Embedded Systems

1 code implementation17 Apr 2024 Luca Bompani, Manuele Rusci, Daniele Palossi, Francesco Conti, Luca Benini

This paper introduces Multi-Resolution Rescored Byte-Track (MR2-ByteTrack), a novel video object detection framework for ultra-low-power embedded processors.

Object object-detection +1

Optimizing the Deployment of Tiny Transformers on Low-Power MCUs

1 code implementation3 Apr 2024 Victor J. B. Jung, Alessio Burrello, Moritz Scherer, Francesco Conti, Luca Benini

Moreover, we show that our MHSA depth-first tiling scheme reduces the memory peak by up to 6. 19x, while the fused-weight attention can reduce the runtime by 1. 53x, and number of parameters by 25%.

Hand Gesture Recognition Hand-Gesture Recognition

Boosting keyword spotting through on-device learnable user speech characteristics

no code implementations12 Mar 2024 Cristian Cioflan, Lukas Cavigelli, Luca Benini

Keyword spotting systems for always-on TinyML-constrained applications require on-site tuning to boost the accuracy of offline trained classifiers when deployed in unseen inference conditions.

Few-Shot Learning Keyword Spotting

12 mJ per Class On-Device Online Few-Shot Class-Incremental Learning

1 code implementation12 Mar 2024 Yoga Esa Wibowo, Cristian Cioflan, Thorir Mar Ingolfsson, Michael Hersche, Leo Zhao, Abbas Rahimi, Luca Benini

In this work, we introduce Online Few-Shot Class-Incremental Learning (O-FSCIL), based on a lightweight model consisting of a pretrained and metalearned feature extractor and an expandable explicit memory storing the class prototypes.

class-incremental learning Few-Shot Class-Incremental Learning +1

SzCORE: A Seizure Community Open-source Research Evaluation framework for the validation of EEG-based automated seizure detection algorithms

3 code implementations20 Feb 2024 Jonathan Dan, Una Pale, Alireza Amirshahi, William Cappelletti, Thorir Mar Ingolfsson, Xiaying Wang, Andrea Cossettini, Adriano Bernini, Luca Benini, Sándor Beniczky, David Atienza, Philippe Ryvlin

Based on existing guidelines and recommendations, the framework introduces a set of recommendations and standards related to datasets, file formats, EEG data input content, seizure annotation input and output, cross-validation strategies, and performance metrics.

EEG Seizure Detection

A Tiny Transformer for Low-Power Arrhythmia Classification on Microcontrollers

no code implementations16 Feb 2024 Paola Busia, Matteo Antonio Scrugli, Victor Jean-Baptiste Jung, Luca Benini, Paolo Meloni

Wearable systems for the continuous and real-time monitoring of cardiovascular diseases are becoming widespread and valuable assets in diagnosis and therapy.

Zero-shot Classification using Hyperdimensional Computing

no code implementations30 Jan 2024 Samuele Ruffino, Geethan Karunaratne, Michael Hersche, Luca Benini, Abu Sebastian, Abbas Rahimi

Classification based on Zero-shot Learning (ZSL) is the ability of a model to classify inputs into novel classes on which the model has not previously seen any training examples.

Attribute Attribute Extraction +2

A Heterogeneous RISC-V based SoC for Secure Nano-UAV Navigation

no code implementations7 Jan 2024 Luca Valente, Alessandro Nadalini, Asif Veeran, Mattia Sinigaglia, Bruno Sa, Nils Wistoff, Yvan Tortorella, Simone Benatti, Rafail Psiakis, Ari Kulmala, Baker Mohammad, Sandro Pinto, Daniele Palossi, Luca Benini, Davide Rossi

To the best of the authors' knowledge, it is the first silicon prototype of a ULP SoC coupling the RV64 and RV32 cores in a heterogeneous host+accelerator architecture fully based on the RISC-V ISA.

TCNCA: Temporal Convolution Network with Chunked Attention for Scalable Sequence Processing

no code implementations9 Dec 2023 Aleksandar Terzic, Michael Hersche, Geethan Karunaratne, Luca Benini, Abu Sebastian, Abbas Rahimi

We build upon their approach by replacing the linear recurrence with a special temporal convolutional network which permits larger receptive field size with shallower networks, and reduces the computational complexity to $O(L)$.

Language Modelling

MIMONets: Multiple-Input-Multiple-Output Neural Networks Exploiting Computation in Superposition

1 code implementation NeurIPS 2023 Nicolas Menet, Michael Hersche, Geethan Karunaratne, Luca Benini, Abu Sebastian, Abbas Rahimi

MIMONets augment various deep neural network architectures with variable binding mechanisms to represent an arbitrary number of inputs in a compositional data structure via fixed-width distributed representations.

Quantitative Evaluation of a Multi-Modal Camera Setup for Fusing Event Data with RGB Images

no code implementations3 Nov 2023 Julian Moosmann, Jakub Mandula, Philipp Mayer, Luca Benini, Michele Magno

This work quantitatively evaluates a multi-modal camera setup for fusing high-resolution DVS data with RGB image data by static camera alignment.

Autonomous Driving object-detection +1

Ultra-Efficient On-Device Object Detection on AI-Integrated Smart Glasses with TinyissimoYOLO

1 code implementation2 Nov 2023 Julian Moosmann, Pietro Bonazzi, Yawei Li, Sizhen Bian, Philipp Mayer, Luca Benini, Michele Magno

To this goal, we designed a smart glasses prototype as a research platform featuring two microcontrollers, including a novel milliwatt-power RISC-V parallel processor with a hardware accelerator for visual AI, and a Bluetooth low-power module for communication.

Benchmarking Edge-computing +3

Enhancing Neural Architecture Search with Multiple Hardware Constraints for Deep Learning Model Deployment on Tiny IoT Devices

2 code implementations11 Oct 2023 Alessio Burrello, Matteo Risso, Beatrice Alessandra Motetti, Enrico Macii, Luca Benini, Daniele Jahier Pagliari

The rapid proliferation of computing domains relying on Internet of Things (IoT) devices has created a pressing need for efficient and accurate deep-learning (DL) models that can run on low-power devices.

Neural Architecture Search

Enhancing Performance, Calibration Time and Efficiency in Brain-Machine Interfaces through Transfer Learning and Wearable EEG Technology

no code implementations14 Sep 2023 Xiaying Wang, Lan Mei, Victor Kartsch, Andrea Cossettini, Luca Benini

The comfortable BMI setup with tiny CNN and TL paves the way to future on-device continual learning, essential for tackling inter-session variability and improving usability.

Continual Learning EEG +1

A Wearable Ultra-Low-Power sEMG-Triggered Ultrasound System for Long-Term Muscle Activity Monitoring

no code implementations13 Sep 2023 Sebastian Frey, Victor Kartsch, Christoph Leitner, Andrea Cossettini, Sergei Vostrikov, Simone Benatti, Luca Benini

Assuming a muscle contraction of 200 ms at a contraction rate of 1 Hz, the proposed approach enables more than 59% energy saving (with a full-system average power consumption of 12. 2 mW) as compared to operating both sEMG and US continuously.

EpiDeNet: An Energy-Efficient Approach to Seizure Detection for Embedded Systems

no code implementations28 Aug 2023 Thorir Mar Ingolfsson, Upasana Chakraborty, Xiaying Wang, Sandor Beniczky, Pauline Ducouret, Simone Benatti, Philippe Ryvlin, Andrea Cossettini, Luca Benini

The EpiDeNet-SSWCE method demonstrates effective and accurate seizure detection performance on heavily imbalanced datasets, while being suited for implementation on energy-constrained platforms.

EEG Seizure Detection +1

Flexible and Fully Quantized Ultra-Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

no code implementations12 Jul 2023 Julian Moosmann, Hanna Mueller, Nicky Zimmerman, Georg Rutishauser, Luca Benini, Michele Magno

With this paper, we demonstrate the suitability and flexibility of TinyissimoYOLO on state-of-the-art detection datasets for real-time ultra-low-power edge inference.

object-detection Object Detection

ITA: An Energy-Efficient Attention and Softmax Accelerator for Quantized Transformers

no code implementations7 Jul 2023 Gamze İslamoğlu, Moritz Scherer, Gianna Paulin, Tim Fischer, Victor J. B. Jung, Angelo Garofalo, Luca Benini

Transformer networks have emerged as the state-of-the-art approach for natural language processing tasks and are gaining popularity in other domains such as computer vision and audio processing.

Quantization

Free Bits: Latency Optimization of Mixed-Precision Quantized Neural Networks on the Edge

no code implementations6 Jul 2023 Georg Rutishauser, Francesco Conti, Luca Benini

Mixed-precision quantization, where a deep neural network's layers are quantized to different precisions, offers the opportunity to optimize the trade-offs between model size, latency, and statistical accuracy beyond what can be achieved with homogeneous-bit-width quantization.

Navigate Quantization

BioGAP: a 10-Core FP-capable Ultra-Low Power IoT Processor, with Medical-Grade AFE and BLE Connectivity for Wearable Biosignal Processing

no code implementations4 Jul 2023 Sebastian Frey, Marco Guermandi, Simone Benatti, Victor Kartsch, Andrea Cossettini, Luca Benini

Wearable biosignal processing applications are driving significant progress toward miniaturized, energy-efficient Internet-of-Things solutions for both clinical and consumer applications.

SSVEP

Precision-aware Latency and Energy Balancing on Multi-Accelerator Platforms for DNN Inference

1 code implementation8 Jun 2023 Matteo Risso, Alessio Burrello, Giuseppe Maria Sarda, Luca Benini, Enrico Macii, Massimo Poncino, Marian Verhelst, Daniele Jahier Pagliari

The need to execute Deep Neural Networks (DNNs) at low latency and low power at the edge has spurred the development of new heterogeneous Systems-on-Chips (SoCs) encapsulating a diverse set of hardware accelerators.

Quantization

Energy-efficient Wearable-to-Mobile Offload of ML Inference for PPG-based Heart-Rate Estimation

no code implementations8 Jun 2023 Alessio Burrello, Matteo Risso, Noemi Tomasello, Yukai Chen, Luca Benini, Enrico Macii, Massimo Poncino, Daniele Jahier Pagliari

In this work, we propose a collaborative inference approach that uses both a smartwatch and a connected smartphone to maximize the performance of heart rate (HR) tracking while also maximizing the smartwatch's battery life.

Collaborative Inference Heart rate estimation

Reduced Precision Floating-Point Optimization for Deep Neural Network On-Device Learning on MicroControllers

1 code implementation30 May 2023 Davide Nadalini, Manuele Rusci, Luca Benini, Francesco Conti

Enabling On-Device Learning (ODL) for Ultra-Low-Power Micro-Controller Units (MCUs) is a key step for post-deployment adaptation and fine-tuning of Deep Neural Network (DNN) models in future TinyML applications.

Continual Learning Image Classification +1

ColibriUAV: An Ultra-Fast, Energy-Efficient Neuromorphic Edge Processing UAV-Platform with Event-Based and Frame-Based Cameras

no code implementations27 May 2023 Sizhen Bian, Lukas Schulthess, Georg Rutishauser, Alfio Di Mauro, Luca Benini, Michele Magno

The interest in dynamic vision sensor (DVS)-powered unmanned aerial vehicles (UAV) is raising, especially due to the microsecond-level reaction time of the bio-inspired event sensor, which increases robustness and reduces latency of the perception tasks compared to a RGB camera.

Parallelizing Optical Flow Estimation on an Ultra-Low Power RISC-V Cluster for Nano-UAV Navigation

no code implementations22 May 2023 Jonas Kühne, Michele Magno, Luca Benini

On micro and nano UAVs, real-time calculation of the optical flow is run on low power and resource-constrained microcontroller units (MCUs).

Autonomous Navigation Optical Flow Estimation

A Fast and Accurate Optical Flow Camera for Resource-Constrained Edge Applications

no code implementations22 May 2023 Jonas Kühne, Michele Magno, Luca Benini

The paper characterizes the optical flow sensor in high frame-rate, low-latency settings, with a frame rate of up to 88 fps at the full resolution of 1124 by 1364 pixels and up to 240 fps at a reduced camera resolution of 280 by 336, for both classical camera images and optical flow data.

Optical Flow Estimation

Marsellus: A Heterogeneous RISC-V AI-IoT End-Node SoC with 2-to-8b DNN Acceleration and 30%-Boost Adaptive Body Biasing

1 code implementation15 May 2023 Francesco Conti, Gianna Paulin, Angelo Garofalo, Davide Rossi, Alfio Di Mauro, Georg Rutishauser, Gianmarco Ottavi, Manuel Eggimann, Hayate Okuhara, Luca Benini

We present Marsellus, an all-digital heterogeneous SoC for AI-IoT end-nodes fabricated in GlobalFoundries 22nm FDX that combines 1) a general-purpose cluster of 16 RISC-V Digital Signal Processing (DSP) cores attuned for the execution of a diverse range of workloads exploiting 4-bit and 2-bit arithmetic extensions (XpulpNN), combined with fused MAC&LOAD operations and floating-point support; 2) a 2-8bit Reconfigurable Binary Engine (RBE) to accelerate 3x3 and 1x1 (pointwise) convolutions in DNNs; 3) a set of On-Chip Monitoring (OCM) blocks connected to an Adaptive Body Biasing (ABB) generator and a hardware control loop, enabling on-the-fly adaptation of transistor threshold voltages.

SALSA: Simulated Annealing based Loop-Ordering Scheduler for DNN Accelerators

1 code implementation20 Apr 2023 Victor J. B. Jung, Arne Symons, Linyan Mei, Marian Verhelst, Luca Benini

To meet the growing need for computational power for DNNs, multiple specialized hardware architectures have been proposed.

Factorizers for Distributed Sparse Block Codes

no code implementations24 Mar 2023 Michael Hersche, Aleksandar Terzic, Geethan Karunaratne, Jovin Langenegger, Angéline Pouget, Giovanni Cherubini, Luca Benini, Abu Sebastian, Abbas Rahimi

Secondly, the proposed factorizer maintains a high accuracy when queried by noisy product vectors generated using deep convolutional neural networks (CNNs).

Attribute

Hybrid Modular Redundancy: Exploring Modular Redundancy Approaches in RISC-V Multi-Core Computing Clusters for Reliable Processing in Space

no code implementations15 Mar 2023 Michael Rogenmoser, Yvan Tortorella, Davide Rossi, Francesco Conti, Luca Benini

To mitigate the overheads of traditional radiation hardening and modular redundancy approaches, we present a novel Hybrid Modular Redundancy (HMR) approach, a redundancy scheme that features a cluster of RISC-V processors with a flexible on-demand dual-core and triple-core lockstep grouping of computing cores with runtime split-lock capabilities.

Deep Neural Network Architecture Search for Accurate Visual Pose Estimation aboard Nano-UAVs

no code implementations3 Mar 2023 Elia Cereda, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessandro Giusti, Daniele Jahier Pagliari, Daniele Palossi

In this work, we leverage a novel neural architecture search (NAS) technique to automatically identify several Pareto-optimal convolutional neural networks (CNNs) for a visual pose estimation task.

Neural Architecture Search Pose Estimation

Lightweight Neural Architecture Search for Temporal Convolutional Networks at the Edge

1 code implementation24 Jan 2023 Matteo Risso, Alessio Burrello, Francesco Conti, Lorenzo Lamberti, Yukai Chen, Luca Benini, Enrico Macii, Massimo Poncino, Daniele Jahier Pagliari

Neural Architecture Search (NAS) is quickly becoming the go-to approach to optimize the structure of Deep Learning (DL) models for complex tasks such as Image Classification or Object Detection.

Image Classification Neural Architecture Search +4

RedMule: A Mixed-Precision Matrix-Matrix Operation Engine for Flexible and Energy-Efficient On-Chip Linear Algebra and TinyML Training Acceleration

1 code implementation10 Jan 2023 Yvan Tortorella, Luca Bertaccini, Luca Benini, Davide Rossi, Francesco Conti

The increasing interest in TinyML, i. e., near-sensor machine learning on power budgets of a few tens of mW, is currently pushing toward enabling TinyML-class training as opposed to inference only.

Self-sustaining Ultra-wideband Positioning System for Event-driven Indoor Localization

no code implementations9 Dec 2022 Philipp Mayer, Michele Magno, Luca Benini

The energy consumption for position updates, with an accuracy of $40~cm$ (2D) in realistic non-line-of-sight conditions, is $10. 84~mJ$.

Indoor Localization Motion Detection +2

Fully On-board Low-Power Localization with Multizone Time-of-Flight Sensors on Nano-UAVs

1 code implementation25 Nov 2022 Hanna Müller, Nicky Zimmerman, Tommaso Polonelli, Michele Magno, Jens Behley, Cyrill Stachniss, Luca Benini

Experimental evaluation using a nano-UAV open platform demonstrated that the proposed solution is capable of localizing on a 31. 2m$\boldsymbol{^2}$ map with 0. 15m accuracy and an above 95% success rate.

In-memory factorization of holographic perceptual representations

1 code implementation9 Nov 2022 Jovin Langenegger, Geethan Karunaratne, Michael Hersche, Luca Benini, Abu Sebastian, Abbas Rahimi

Disentanglement of constituent factors of a sensory signal is central to perception and cognition and hence is a critical task for future artificial intelligence systems.

Disentanglement

RUAD: unsupervised anomaly detection in HPC systems

no code implementations28 Aug 2022 Martin Molan, Andrea Borghesi, Daniele Cesarini, Luca Benini, Andrea Bartolini

However, current state-of-the-art (SoA) approaches to anomaly detection are supervised and semi-supervised, so they require a human-labelled dataset with anomalies - this is often impractical to collect in production HPC systems.

Clustering Unsupervised Anomaly Detection

In-memory Realization of In-situ Few-shot Continual Learning with a Dynamically Evolving Explicit Memory

no code implementations14 Jul 2022 Geethan Karunaratne, Michael Hersche, Jovin Langenegger, Giovanni Cherubini, Manuel Le Gallo-Bourdeau, Urs Egger, Kevin Brew, Sam Choi, INJO OK, Mary Claire Silvestre, Ning li, Nicole Saulnier, Victor Chan, Ishtiaq Ahsan, Vijay Narayanan, Luca Benini, Abu Sebastian, Abbas Rahimi

We demonstrate for the first time how the EM unit can physically superpose multiple training examples, expand to accommodate unseen classes, and perform similarity search during inference, using operations on an IMC core based on phase-change memory (PCM).

Continual Learning

Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes

1 code implementation17 Jun 2022 Matteo Risso, Alessio Burrello, Luca Benini, Enrico Macii, Massimo Poncino, Daniele Jahier Pagliari

Quantization is widely employed in both cloud and edge systems to reduce the memory occupation, latency, and energy consumption of deep neural networks.

Neural Architecture Search Quantization

Multi-Complexity-Loss DNAS for Energy-Efficient and Memory-Constrained Deep Neural Networks

1 code implementation1 Jun 2022 Matteo Risso, Alessio Burrello, Luca Benini, Enrico Macii, Massimo Poncino, Daniele Jahier Pagliari

When deployed on a commercial edge device, the STM NUCLEO-H743ZI2, our networks span a range of 2. 18x in energy consumption and 4. 04% in accuracy for the same memory constraint, and reduce energy by up to 2. 2x with negligible accuracy drop with respect to the baseline.

Neural Architecture Search

Adaptive Random Forests for Energy-Efficient Inference on Microcontrollers

no code implementations27 May 2022 Francesco Daghero, Alessio Burrello, Chen Xie, Luca Benini, Andrea Calimera, Enrico Macii, Massimo Poncino, Daniele Jahier Pagliari

The accuracy of a RF often increases with the number of internal weak learners (decision trees), but at the cost of a proportional increase in inference latency and energy consumption.

Aerosense: A Self-Sustainable And Long-Range Bluetooth Wireless Sensor Node for Aerodynamic and Aeroacoustic Monitoring on Wind Turbines

no code implementations24 May 2022 Tommaso Polonelli, Hanna Müller, Weikang Kong, Raphael Fischer, Luca Benini, Michele Magno

This paper presents a low-power, self-sustainable, and modular wireless sensor node for aerodynamic and acoustic measurements on wind turbines and other industrial structures.

Data Compression

Reducing Neural Architecture Search Spaces with Training-Free Statistics and Computational Graph Clustering

no code implementations29 Apr 2022 Thorir Mar Ingolfsson, Mark Vero, Xiaying Wang, Lorenzo Lamberti, Luca Benini, Matteo Spallanzani

The computational demands of neural architecture search (NAS) algorithms are usually directly proportional to the size of their target search spaces.

Clustering Graph Clustering +1

Energy-Efficient Tree-Based EEG Artifact Detection

no code implementations19 Apr 2022 Thorir Mar Ingolfsson, Andrea Cossettini, Simone Benatti, Luca Benini

In this work we present the implementation of an artifact detection algorithm based on a minimal number of EEG channels on a parallel ultra-low-power (PULP) embedded platform.

Artifact Detection EEG +1

Energy-Efficient Adaptive Machine Learning on IoT End-Nodes With Class-Dependent Confidence

no code implementations7 Apr 2022 Francesco Daghero, Alessio Burrello, Daniele Jahier Pagliari, Luca Benini, Enrico Macii, Massimo Poncino

Energy-efficient machine learning models that can run directly on edge devices are of great interest in IoT applications, as they can reduce network pressure and response latency, and improve privacy.

BIG-bench Machine Learning

Constrained Few-shot Class-incremental Learning

2 code implementations CVPR 2022 Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu Sebastian, Abbas Rahimi

Moreover, it is imperative that such learning must respect certain memory and computational constraints such as (i) training samples are limited to only a few per class, (ii) the computational cost of learning a novel class remains constant, and (iii) the memory footprint of the model grows at most linearly with the number of classes observed.

class-incremental learning continual few-shot learning +2

MI-BMInet: An Efficient Convolutional Neural Network for Motor Imagery Brain--Machine Interfaces with EEG Channel Selection

no code implementations28 Mar 2022 Xiaying Wang, Michael Hersche, Michele Magno, Luca Benini

A brain--machine interface (BMI) based on motor imagery (MI) enables the control of devices using brain signals while the subject imagines performing a movement.

EEG Motor Imagery

Robust and Energy-efficient PPG-based Heart-Rate Monitoring

no code implementations28 Mar 2022 Matteo Risso, Alessio Burrello, Daniele Jahier Pagliari, Simone Benatti, Enrico Macii, Luca Benini, Massimo Poncino

A wrist-worn PPG sensor coupled with a lightweight algorithm can run on a MCU to enable non-invasive and comfortable monitoring, but ensuring robust PPG-based heart-rate monitoring in the presence of motion artifacts is still an open challenge.

Neural Architecture Search

Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on Wearable Devices

1 code implementation24 Mar 2022 Alessio Burrello, Daniele Jahier Pagliari, Matteo Risso, Simone Benatti, Enrico Macii, Luca Benini, Massimo Poncino

Our most accurate quantized network achieves 4. 41 Beats Per Minute (BPM) of Mean Absolute Error (MAE), with an energy consumption of 47. 65 mJ and a memory footprint of 412 kB.

Neural Architecture Search Photoplethysmography (PPG)

Training Quantised Neural Networks with STE Variants: the Additive Noise Annealing Algorithm

no code implementations CVPR 2022 Matteo Spallanzani, Gian Paolo Leonardi, Luca Benini

When testing ANA on the CIFAR-10 image classification benchmark, we find that the major impact on task accuracy is not due to the qualitative shape of the regularisations but to the proper synchronisation of the different STE variants used in a network, in accordance with the theoretical results.

Image Classification

A Neuro-vector-symbolic Architecture for Solving Raven's Progressive Matrices

1 code implementation9 Mar 2022 Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebastian, Abbas Rahimi

Compared to state-of-the-art deep neural network and neuro-symbolic approaches, end-to-end training of NVSA achieves a new record of 87. 7% average accuracy in RAVEN, and 88. 1% in I-RAVEN datasets.

Logical Reasoning

Exploring Scalable, Distributed Real-Time Anomaly Detection for Bridge Health Monitoring

1 code implementation4 Mar 2022 Amirhossein Moallemi, Alessio Burrello, Davide Brunelli, Luca Benini

Modern real-time Structural Health Monitoring systems can generate a considerable amount of information that must be processed and evaluated for detecting early anomalies and generating prompt warnings and alarms about the civil infrastructure conditions.

Anomaly Detection Cloud Computing +1

Vau da muntanialas: Energy-efficient multi-die scalable acceleration of RNN inference

no code implementations14 Feb 2022 Gianna Paulin, Francesco Conti, Lukas Cavigelli, Luca Benini

For quantifying the overall system power, including I/O power, we built Vau da Muntanialas, to the best of our knowledge, the first demonstration of a systolic multi-chip-on-PCB array of RNN accelerator.

Quantization speech-recognition +2

GVSoC: A Highly Configurable, Fast and Accurate Full-Platform Simulator for RISC-V based IoT Processors

1 code implementation20 Jan 2022 Nazareno Bruschi, Germain Haugou, Giuseppe Tagliavini, Francesco Conti, Luca Benini, Davide Rossi

The last few years have seen the emergence of IoT processors: ultra-low power systems-on-chips (SoCs) combining lightweight and flexible micro-controller units (MCUs), often based on open-ISA RISC-V cores, with application-specific accelerators to maximize performance and energy efficiency.

A Heterogeneous In-Memory Computing Cluster For Flexible End-to-End Inference of Real-World Deep Neural Networks

no code implementations4 Jan 2022 Angelo Garofalo, Gianmarco Ottavi, Francesco Conti, Geethan Karunaratne, Irem Boybat, Luca Benini, Davide Rossi

Furthermore, we explore the requirements for end-to-end inference of a full mobile-grade DNN (MobileNetV2) in terms of IMC array resources, by scaling up our heterogeneous architecture to a multi-array accelerator.

Sub-100uW Multispectral Riemannian Classification for EEG-based Brain--Machine Interfaces

no code implementations18 Dec 2021 Xiaying Wang, Lukas Cavigelli, Tibor Schneider, Luca Benini

Motor imagery brain--machine interfaces enable us to control machines by merely thinking of performing a motor action.

Classification EEG +1

A TinyML Platform for On-Device Continual Learning with Quantized Latent Replays

no code implementations20 Oct 2021 Leonardo Ravaglia, Manuele Rusci, Davide Nadalini, Alessandro Capotondi, Francesco Conti, Luca Benini

In this work, we introduce a HW/SW platform for end-to-end CL based on a 10-core FP32-enabled parallel ultra-low-power (PULP) processor.

Continual Learning Quantization

Practical Adversarial Attacks on Brain--Computer Interfaces

no code implementations29 Sep 2021 Rodolfo Octavio Siller Quintanilla, Xiaying Wang, Michael Hersche, Luca Benini, Gagandeep Singh

We propose new methods to induce denial-of-service attacks and incorporate domain-specific insights and constraints to accomplish two key goals: (i) create smooth adversarial attacks that are physiologically plausible; (ii) consider the realistic case where the attack happens at the origin of the signal acquisition and it propagates on the human head.

EEG

A Fully-Integrated 5mW, 0.8Gbps Energy-Efficient Chip-to-Chip Data Link for Ultra-Low-Power IoT End-Nodes in 65-nm CMOS

no code implementations5 Sep 2021 Hayate Okuhara, Ahmed Elnaqib, Martino Dazzi, Pierpaolo Palestri, Simone Benatti, Luca Benini, Davide Rossi

The increasing complexity of Internet-of-Things (IoT) applications and near-sensor processing algorithms is pushing the computational power of low-power, battery-operated end-node systems.

Memory-Aware Partitioning of Machine Learning Applications for Optimal Energy Use in Batteryless Systems

no code implementations5 Aug 2021 Andres Gomez, Andreas Tretter, Pascal Alexander Hager, Praveenth Sanmugarajah, Luca Benini, Lothar Thiele

By leveraging interkernel data dependencies, these energy-bounded execution cycles minimize the number of system activations and nonvolatile data transfers, and thus the total energy overhead.

NN2CAM: Automated Neural Network Mapping for Multi-Precision Edge Processing on FPGA-Based Cameras

no code implementations24 Jun 2021 Petar Jokic, Stephane Emery, Luca Benini

The record-breaking achievements of deep neural networks (DNNs) in image classification and detection tasks resulted in a surge of new computer vision applications during the past years.

Image Classification

A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

no code implementations24 Jun 2021 Petar Jokic, Erfan Azarkhish, Andrea Bonetti, Marc Pons, Stephane Emery, Luca Benini

This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance.

Towards Long-term Non-invasive Monitoring for Epilepsy via Wearable EEG Devices

no code implementations15 Jun 2021 Thorir Mar Ingolfsson, Andrea Cossettini, Xiaying Wang, Enrico Tabanelli, Giuseppe Tagliavini, Philippe Ryvlin, Luca Benini, Simone Benatti

We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform.

EEG Seizure Detection

Trimming Feature Extraction and Inference for MCU-based Edge NILM: a Systematic Approach

no code implementations21 May 2021 Enrico Tabanelli, Davide Brunelli, Andrea Acquaviva, Luca Benini

State-of-the-Art approaches are based on Machine Learning methods and exploit the fusion of time- and frequency-domain features from current and voltage sensors.

Non-Intrusive Load Monitoring

Implementing CNN Layers on the Manticore Cluster-Based Many-Core Architecture

no code implementations16 Apr 2021 Andreas Kurth, Fabian Schuiki, Luca Benini

This document presents implementations of fundamental convolutional neural network (CNN) layers on the Manticore cluster-based many-core architecture and discusses their characteristics and trade-offs.

Enabling Design Methodologies and Future Trends for Edge AI: Specialization and Co-design

no code implementations25 Mar 2021 Cong Hao, Jordan Dotzel, JinJun Xiong, Luca Benini, Zhiru Zhang, Deming Chen

Artificial intelligence (AI) technologies have dramatically advanced in recent years, resulting in revolutionary changes in people's lives.

Benchmarking Edge-computing

ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal Convolutional Network

1 code implementation25 Mar 2021 Thorir Mar Ingolfsson, Xiaying Wang, Michael Hersche, Alessio Burrello, Lukas Cavigelli, Luca Benini

With 9. 91 GMAC/s/W, it is 23. 0 times more energy-efficient and 46. 85 times faster than an implementation on the ARM Cortex M4F (0. 43 GMAC/s/W).

Arrhythmia Detection

Sound Event Detection with Binary Neural Networks on Tightly Power-Constrained IoT Devices

no code implementations12 Jan 2021 Gianmarco Cerutti, Renzo Andri, Lukas Cavigelli, Michele Magno, Elisabetta Farella, Luca Benini

This BNN reaches a 77. 9% accuracy, just 7% lower than the full-precision version, with 58 kB (7. 2 times less) for the weights and 262 kB (2. 4 times less) memory in total.

Event Detection Object Recognition +2

CUTIE: Beyond PetaOp/s/W Ternary DNN Inference Acceleration with Better-than-Binary Energy Efficiency

no code implementations3 Nov 2020 Moritz Scherer, Georg Rutishauser, Lukas Cavigelli, Luca Benini

We present a 3. 1 POp/s/W fully digital hardware accelerator for ternary neural networks.

Hardware Architecture

Binarization Methods for Motor-Imagery Brain-Computer Interface Classification

no code implementations14 Oct 2020 Michael Hersche, Luca Benini, Abbas Rahimi

Our first method, based on sparse bipolar random projection, projects a large number of real-valued Riemannian covariance features to a binary space, where a linear SVM classifier can be learned with binary weights too.

Binarization Classification +2

Robust High-dimensional Memory-augmented Neural Networks

no code implementations5 Oct 2020 Geethan Karunaratne, Manuel Schmuck, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abu Sebastian, Abbas Rahimi

Traditional neural networks require enormous amounts of data to build their complex mappings during a slow training procedure that hinders their abilities for relearning and adapting to new data.

Few-Shot Image Classification Vocal Bursts Intensity Prediction

Leveraging Automated Mixed-Low-Precision Quantization for tiny edge microcontrollers

no code implementations12 Aug 2020 Manuele Rusci, Marco Fariselli, Alessandro Capotondi, Luca Benini

The severe on-chip memory limitations are currently preventing the deployment of the most accurate Deep Neural Network (DNN) models on tiny MicroController Units (MCUs), even if leveraging an effective 8-bit quantization scheme.

Quantization

Improving Memory Utilization in Convolutional Neural Network Accelerators

no code implementations20 Jul 2020 Petar Jokic, Stephane Emery, Luca Benini

While the accuracy of convolutional neural networks has achieved vast improvements by introducing larger and deeper network architectures, also the memory footprint for storing their parameters and activations has increased.

Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node

no code implementations17 Jul 2020 Alfio Di Mauro, Francesco Conti, Pasquale Davide Schiavone, Davide Rossi, Luca Benini

On a prototype in 22nm FDX technology, we demonstrate that both the logic and SRAM voltage can be dropped to 0. 5Vwithout any accuracy penalty on a BNN trained for the CIFAR-10 dataset, improving energy efficiency by 2. 2X w. r. t.

PICO

A 0.5GHz 0.35mW LDO-Powered Constant-Slope Phase Interpolator with 0.22$\%$ INL

no code implementations15 Jul 2020 Ahmed Elnaqib, Hayate Okuhara, Taekwang Jang, Davide Rossi, Luca Benini

Clock generators are an essential and critical building block of any communication link, whether it be wired or wireless, and they are increasingly critical given the push for lower I/O power and higher bandwidth in Systems-on-Chip (SoCs) for the Internet-of-Things (IoT).

TinyRadarNN: Combining Spatial and Temporal Convolutional Neural Networks for Embedded Gesture Recognition with Short Range Radars

1 code implementation25 Jun 2020 Moritz Scherer, Michele Magno, Jonas Erb, Philipp Mayer, Manuel Eggimann, Luca Benini

Furthermore, the gesture recognition classifier has been implemented on a Parallel Ultra-Low Power Processor, demonstrating that real-time prediction is feasible with only 21 mW of power consumption for the full TCN sequence prediction network, while a system-level power consumption of less than 100 mW is achieved.

Hand Gesture Recognition Hand-Gesture Recognition

Automated Design Space Exploration for optimised Deployment of DNN on Arm Cortex-A CPUs

no code implementations9 Jun 2020 Miguel de Prado, Andrew Mundy, Rabia Saeed, Maurizio Denna, Nuria Pazos, Luca Benini

The framework relies on a Reinforcement Learning search that, combined with a deep learning inference framework, automatically explores the design space and learns an optimised solution that speeds up the performance and reduces the memory on embedded CPU platforms.

ChewBaccaNN: A Flexible 223 TOPS/W BNN Accelerator

no code implementations12 May 2020 Renzo Andri, Geethan Karunaratne, Lukas Cavigelli, Luca Benini

Furthermore, it can perform inference on a binarized ResNet-18 trained with 8-bases Group-Net to achieve a 67. 5% Top-1 accuracy with only 3. 0 mJ/frame -- at an accuracy drop of merely 1. 8% from the full-precision ResNet-18.

Optimizing Temporal Convolutional Network inference on FPGA-based accelerators

no code implementations7 May 2020 Marco Carreras, Gianfranco Deriu, Luigi Raffo, Luca Benini, Paolo Meloni

Convolutional Neural Networks are extensively used in a wide range of applications, commonly including computer vision tasks like image and video classification, recognition, and segmentation.

Scheduling Time Series Analysis +1

Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet Implementation for Edge Motor-Imagery Brain--Machine Interfaces

1 code implementation24 Apr 2020 Tibor Schneider, Xiaying Wang, Michael Hersche, Lukas Cavigelli, Luca Benini

We quantize weights and activations to 8-bit fixed-point with a negligible accuracy loss of 0. 4% on 4-class MI, and present an energy-efficient hardware-aware implementation on the Mr. Wolf parallel ultra-low power (PULP) System-on-Chip (SoC) by utilizing its custom RISC-V ISA extensions and 8-core compute cluster.

EEG Motor Imagery

LLHD: A Multi-level Intermediate Representation for Hardware Description Languages

1 code implementation7 Apr 2020 Fabian Schuiki, Andreas Kurth, Tobias Grosser, Luca Benini

These tools are monolithic and mostly proprietary, disagree in their implementation of HDLs, and while many redundant IRs exists, no IR today can be used through the entire circuit design flow.

Programming Languages

pAElla: Edge-AI based Real-Time Malware Detection in Data Centers

1 code implementation7 Apr 2020 Antonio Libri, Andrea Bartolini, Luca Benini

The method -- called pAElla -- targets real-time Malware Detection (MD), it runs on an out-of-band IoT-based monitoring system for DCs/SCs, and involves Power Spectral Density of power measurements, along with AutoEncoders.

Anomaly Detection Edge-computing +1

An Accurate EEGNet-based Motor-Imagery Brain-Computer Interface for Low-Power Edge Computing

no code implementations31 Mar 2020 Xiaying Wang, Michael Hersche, Batuhan Tömekce, Burak Kaya, Michele Magno, Luca Benini

Our novel method further scales down the standard EEGNet at a negligible accuracy loss of 0. 31% with 7. 6x memory footprint reduction and a small accuracy loss of 2. 51% with 15x reduction.

Edge-computing EEG +2

InfiniWolf: Energy Efficient Smart Bracelet for Edge Computing with Dual Source Energy Harvesting

no code implementations28 Feb 2020 Michele Magno, Xiaying Wang, Manuel Eggimann, Lukas Cavigelli, Luca Benini

This work presents InfiniWolf, a novel multi-sensor smartwatch that can achieve self-sustainability exploiting thermal and solar energy harvesting, performing computationally high demanding tasks.

Edge-computing

Extending the RISC-V ISA for Efficient RNN-based 5G Radio Resource Management

no code implementations27 Feb 2020 Renzo Andri, Tomas Henriksson, Luca Benini

Radio Resource Management (RRM) in 5G mobile communication is a challenging problem for which Recurrent Neural Networks (RNN) have shown promising results.

Management

Combining Learning and Optimization for Transprecision Computing

2 code implementations24 Feb 2020 Andrea Borghesi, Giuseppe Tagliavini, Michele Lombardi, Luca Benini, Michela Milano

The ML model learns the relation between variables precision and the output error; this information is then embedded in the MP focused on minimizing the number of bits.

Distributed, Parallel, and Cluster Computing

RPR: Random Partition Relaxation for Training; Binary and Ternary Weight Neural Networks

no code implementations4 Jan 2020 Lukas Cavigelli, Luca Benini

We present Random Partition Relaxation (RPR), a method for strong quantization of neural networks weight to binary (+1/-1) and ternary (+1/0/-1) values.

Quantization

HR-SAR-Net: A Deep Neural Network for Urban Scene Segmentation from High-Resolution SAR Data

no code implementations10 Dec 2019 Xiaying Wang, Lukas Cavigelli, Manuel Eggimann, Michele Magno, Luca Benini

Synthetic aperture radar (SAR) data is becoming increasingly available to a wide range of users through commercial service providers with resolutions reaching 0. 5m/px.

Scene Segmentation Segmentation

Constrained deep neural network architecture search for IoT devices accounting for hardware calibration

no code implementations NeurIPS 2019 Florian Scheidegger, Luca Benini, Costas Bekas, A. Cristiano I. Malossi

The narrow-space search of floating-point models improves the accuracy on CIFAR10 of an established IoT model from 70. 64% to 74. 87% within the same memory constraints.

General Classification Image Classification

FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural Network Inference at the Edge of the Internet of Things

1 code implementation8 Nov 2019 Xiaying Wang, Michele Magno, Lukas Cavigelli, Luca Benini

The growing number of low-power smart devices in the Internet of Things is coupled with the concept of "Edge Computing", that is moving some of the intelligence, especially machine learning, towards the edge of the network.

BIG-bench Machine Learning Edge-computing +1

Constrained deep neural network architecture search for IoT devices accounting hardware calibration

no code implementations24 Sep 2019 Florian Scheidegger, Luca Benini, Costas Bekas, Cristiano Malossi

We further improve the accuracy to 82. 07% by including 16-bit half types and we obtain the best accuracy of 83. 45% by extending the search with model optimized IEEE 754 reduced types.

General Classification Image Classification

EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference and Training Accelerators

2 code implementations30 Aug 2019 Lukas Cavigelli, Georg Rutishauser, Luca Benini

In the wake of the success of convolutional neural networks in image classification, object recognition, speech recognition, etc., the demand for deploying these compute-intensive ML models on embedded and mobile systems with tight power and energy constraints at low cost, as well as for boosting throughput in data centers, is growing rapidly.

Image Classification Object Recognition +2

PULP-NN: Accelerating Quantized Neural Networks on Parallel Ultra-Low-Power RISC-V Processors

1 code implementation29 Aug 2019 Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, Luca Benini

We present PULP-NN, an optimized computing library for a parallel ultra-low-power tightly coupled cluster of RISC-V processors.

Quantization

5 Parallel Prism: A topology for pipelined implementations of convolutional neural networks using computational memory

no code implementations8 Jun 2019 Martino Dazzi, Abu Sebastian, Pier Andrea Francese, Thomas Parnell, Luca Benini, Evangelos Eleftheriou

We show that this communication fabric facilitates the pipelined execution of all state of-the-art CNNs by proving the existence of a homomorphism between one graph representation of these networks and the proposed graph topology.

In-memory hyperdimensional computing

no code implementations4 Jun 2019 Geethan Karunaratne, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abbas Rahimi, Abu Sebastian

Hyperdimensional computing (HDC) is an emerging computational framework that takes inspiration from attributes of neuronal circuits such as hyperdimensionality, fully distributed holographic representation, and (pseudo)randomness.

Attribute Classification +4

Ara: A 1 GHz+ Scalable and Energy-Efficient RISC-V Vector Processor with Multi-Precision Floating Point Support in 22 nm FD-SOI

no code implementations2 Jun 2019 Matheus Cavalcante, Fabian Schuiki, Florian Zaruba, Michael Schaffner, Luca Benini

In this paper, we present Ara, a 64-bit vector processor based on the version 0. 5 draft of RISC-V's vector extension, implemented in GlobalFoundries 22FDX FD-SOI technology.

Hardware Architecture

Memory-Driven Mixed Low Precision Quantization For Enabling Deep Network Inference On Microcontrollers

2 code implementations30 May 2019 Manuele Rusci, Alessandro Capotondi, Luca Benini

To fit the memory and computational limitations of resource-constrained edge-devices, we exploit mixed low-bitwidth compression, featuring 8, 4 or 2-bit uniform quantization, and we model the inference graph with integer-only operations.

Quantization

An Open Source and Open Hardware Deep Learning-powered Visual Navigation Engine for Autonomous Nano-UAVs

2 code implementations10 May 2019 Daniele Palossi, Francesco Conti, Luca Benini

Nano-size unmanned aerial vehicles (UAVs), with few centimeters of diameter and sub-10 Watts of total power budget, have so far been considered incapable of running sophisticated visual-based autonomous navigation software without external aid from base-stations, ad-hoc local positioning infrastructure, and powerful external computation servers.

Autonomous Navigation Visual Navigation

Online Anomaly Detection in HPC Systems

1 code implementation22 Feb 2019 Andrea Borghesi, Antonio Libri, Luca Benini, Andrea Bartolini

Reliability is a cumbersome problem in High Performance Computing Systems and Data Centers evolution.

Distributed, Parallel, and Cluster Computing

Optimally Scheduling CNN Convolutions for Efficient Memory Access

no code implementations4 Feb 2019 Arthur Stoutchinin, Francesco Conti, Luca Benini

Embedded inference engines for convolutional networks must be parsimonious in memory bandwidth and buffer sizing to meet power and cost constraints.

Scheduling

Learning to infer: RL-based search for DNN primitive selection on Heterogeneous Embedded Systems

no code implementations18 Nov 2018 Miguel de Prado, Nuria Pazos, Luca Benini

In this work, we present QS-DNN, a fully automatic search based on Reinforcement Learning which, combined with an inference engine optimizer, efficiently explores through the design space and empirically finds the optimal combinations of libraries and primitives to speed up the inference of CNNs on heterogeneous embedded devices.

Reinforcement Learning

QUENN: QUantization Engine for low-power Neural Networks

no code implementations14 Nov 2018 Miguel de Prado, Maurizio Denna, Luca Benini, Nuria Pazos

Deep Learning is moving to edge devices, ushering in a new age of distributed Artificial Intelligence (AI).

Clustering Quantization