1 code implementation • 14 Sep 2021 • Adam Izdebski, Patrick J. Thoral, Robbert C. A. Lalisang, Dean M. McHugh, Diederik Gommers, Olaf L. Cremer, Rob J. Bosman, Sander Rigter, Evert-Jan Wils, Tim Frenzel, Dave A. Dongelmans, Remko de Jong, Marco A. A. Peters, Marlijn J. A Kamps, Dharmanand Ramnarain, Ralph Nowitzky, Fleur G. C. A. Nooteboom, Wouter de Ruijter, Louise C. Urlings-Strop, Ellen G. M. Smit, D. Jannet Mehagnoul-Schipper, Tom Dormans, Cornelis P. C. de Jager, Stefaan H. A. Hendriks, Sefanja Achterberg, Evelien Oostdijk, Auke C. Reidinga, Barbara Festen-Spanjer, Gert B. Brunnekreef, Alexander D. Cornet, Walter van den Tempel, Age D. Boelens, Peter Koetsier, Judith Lens, Harald J. Faber, A. Karakus, Robert Entjes, Paul de Jong, Thijs C. D. Rettig, Sesmu Arbous, Lucas M. Fleuren, Tariq A. Dam, Michele Tonutti, Daan P. de Bruin, Paul W. G. Elbers, Giovanni Cinà
Despite the recent progress in the field of causal inference, to date there is no agreed upon methodology to glean treatment effect estimation from observational data.
1 code implementation • NeurIPS 2021 • Zhaozhi Qian, William R. Zame, Lucas M. Fleuren, Paul Elbers, Mihaela van der Schaar
To close this gap, we propose the latent hybridisation model (LHM) that integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system and to link the expert and latent variables to observable quantities.