no code implementations • 20 Dec 2023 • Lucia Testa, Claudio Battiloro, Stefania Sardellitti, Sergio Barbarossa
In this work, we study the problem of stability of Graph Convolutional Neural Networks (GCNs) under random small perturbations in the underlying graph topology, i. e. under a limited number of insertions or deletions of edges.
1 code implementation • 26 Sep 2023 • Mathilde Papillon, Mustafa Hajij, Helen Jenne, Johan Mathe, Audun Myers, Theodore Papamarkou, Tolga Birdal, Tamal Dey, Tim Doster, Tegan Emerson, Gurusankar Gopalakrishnan, Devendra Govil, Aldo Guzmán-Sáenz, Henry Kvinge, Neal Livesay, Soham Mukherjee, Shreyas N. Samaga, Karthikeyan Natesan Ramamurthy, Maneel Reddy Karri, Paul Rosen, Sophia Sanborn, Robin Walters, Jens Agerberg, Sadrodin Barikbin, Claudio Battiloro, Gleb Bazhenov, Guillermo Bernardez, Aiden Brent, Sergio Escalera, Simone Fiorellino, Dmitrii Gavrilev, Mohammed Hassanin, Paul Häusner, Odin Hoff Gardaa, Abdelwahed Khamis, Manuel Lecha, German Magai, Tatiana Malygina, Rubén Ballester, Kalyan Nadimpalli, Alexander Nikitin, Abraham Rabinowitz, Alessandro Salatiello, Simone Scardapane, Luca Scofano, Suraj Singh, Jens Sjölund, Pavel Snopov, Indro Spinelli, Lev Telyatnikov, Lucia Testa, Maosheng Yang, Yixiao Yue, Olga Zaghen, Ali Zia, Nina Miolane
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning.
1 code implementation • 5 Sep 2023 • Claudio Battiloro, Lucia Testa, Lorenzo Giusti, Stefania Sardellitti, Paolo Di Lorenzo, Sergio Barbarossa
Graph machine learning methods excel at leveraging pairwise relations present in the data.
1 code implementation • 16 Sep 2022 • Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo, Stefania Sardellitti, Sergio Barbarossa
In this paper, we introduce Cell Attention Networks (CANs), a neural architecture operating on data defined over the vertices of a graph, representing the graph as the 1-skeleton of a cell complex introduced to capture higher order interactions.
Ranked #7 on Graph Classification on NCI109
no code implementations • 13 Dec 2021 • Stefania Sardellitti, Sergio Barbarossa, Lucia Testa
The Topological Signal Processing (TSP) framework has been recently developed to analyze signals defined over simplicial complexes, i. e. topological spaces represented by finite sets of elements that are closed under inclusion of subsets [1].