1 code implementation • 14 Sep 2023 • Leonardo Pepino, Pablo Riera, Luciana Ferrer
The goal of universal audio representation learning is to obtain foundational models that can be used for a variety of downstream tasks involving speech, music or environmental sounds.
1 code implementation • 30 Jul 2023 • Jazmin Vidal, Pablo Riera, Luciana Ferrer
We compare two downstream approaches: 1) training the model for phone recognition (PR) using native English data, and 2) training a model directly for the target task using non-native English data.
no code implementations • 13 Jul 2023 • Lautaro Estienne, Luciana Ferrer, Matías Vera, Pablo Piantanida
These models are usually trained with a very large amount of unsupervised text data and adapted to perform a downstream natural language task using methods like fine-tuning, calibration or in-context learning.
1 code implementation • 22 Mar 2023 • Patrick Godau, Piotr Kalinowski, Evangelia Christodoulou, Annika Reinke, Minu Tizabi, Luciana Ferrer, Paul Jäger, Lena Maier-Hein
Domain gaps are among the most relevant roadblocks in the clinical translation of machine learning (ML)-based solutions for medical image analysis.
no code implementations • 24 Feb 2023 • Pablo Riera, Manuela Cerdeiro, Leonardo Pepino, Luciana Ferrer
In this work, we analyze the spatial organization of phone and speaker information in several state-of-the-art speech representations using methods that do not require a downstream model.
no code implementations • 3 Feb 2023 • Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Buettner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice.
1 code implementation • 12 Sep 2022 • Luciana Ferrer
Some of the most common ones for measuring quality of hard decisions are standard and balanced accuracy, standard and balanced error rate, F-beta score, and Matthews correlation coefficient (MCC).
no code implementations • 3 Jun 2022 • Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Florian Buettner, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, A. Emre Kavur, Carole H. Sudre, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Tim Rädsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, M. Jorge Cardoso, Veronika Cheplygina, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Paul F. Jäger
The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint - a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), data set and algorithm output.
no code implementations • 27 Apr 2022 • Mariel Estevez, Luciana Ferrer
In this work, we analyze the performance of several state-of-the-art SV systems across groups defined by the accent of the speakers when speaking English.
1 code implementation • 4 Jan 2022 • Luciana Ferrer, Diego Castan, Mitchell McLaren, Aaron Lawson
We show that this hierarchical approach consistently outperforms the non-hierarchical one for detection of highly related languages, in many cases by large margins.
no code implementations • 23 Dec 2021 • Candelaria Mosquera, Luciana Ferrer, Diego Milone, Daniel Luna, Enzo Ferrante
This work aims to analyze standard evaluation practices adopted by the research community when assessing chest x-ray classifiers, particularly focusing on the impact of class imbalance in such appraisals.
1 code implementation • 1 Nov 2021 • Marcelo Sancinetti, Jazmin Vidal, Cyntia Bonomi, Luciana Ferrer
Phone-level pronunciation scoring is a challenging task, with performance far from that of human annotators.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+3
1 code implementation • 13 Oct 2021 • Leonardo Pepino, Pablo Riera, Luciana Ferrer
Transformers have revolutionized the world of deep learning, specially in the field of natural language processing.
1 code implementation • 12 Apr 2021 • Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Rädsch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, Matthew Blaschko, Florian Büttner, M. Jorge Cardoso, Jianxu Chen, Veronika Cheplygina, Evangelia Christodoulou, Beth Cimini, Gary S. Collins, Sandy Engelhardt, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Fred Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Peter Hirsch, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, A. Emre Kavur, Hannes Kenngott, Jens Kleesiek, Andreas Kleppe, Sven Kohler, Florian Kofler, Annette Kopp-Schneider, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, M. Alican Noyan, Jens Petersen, Gorkem Polat, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clara I. Sánchez, Julien Schroeter, Anindo Saha, M. Alper Selver, Lalith Sharan, Shravya Shetty, Maarten van Smeden, Bram Stieltjes, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul Jäger, Lena Maier-Hein
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation.
2 code implementations • 8 Apr 2021 • Leonardo Pepino, Pablo Riera, Luciana Ferrer
Emotion recognition datasets are relatively small, making the use of the more sophisticated deep learning approaches challenging.
1 code implementation • 1 Apr 2021 • Niko Brümmer, Luciana Ferrer, Albert Swart
For perfect calibration, the Bayes error-rate is upper bounded by min(EER, P, 1-P), where EER is the equal-error-rate and P, 1-P are the prior probabilities of the competing hypotheses.
no code implementations • 9 Feb 2021 • Lara Gauder, Leonardo Pepino, Pablo Riera, Silvina Brussino, Jazmín Vidal, Agustín Gravano, Luciana Ferrer
An automatic prediction of the level of trust that a user has on a certain system could be used to attempt to correct potential distrust by having the system take relevant actions like, for example, apologizing or explaining its decisions.
1 code implementation • 2 Feb 2021 • Luciana Ferrer, Mitchell McLaren, Niko Brummer
When trained on a number of diverse datasets that are labeled only with respect to speaker, the proposed backend consistently and, in some cases, dramatically improves calibration, compared to the standard PLDA approach, on a number of held-out datasets, some of which are markedly different from the training data.
no code implementations • 30 Jul 2020 • Leonardo Pepino, Pablo Riera, Lara Gauder, Agustín Gravano, Luciana Ferrer
Research has shown that trust is an essential aspect of human-computer interaction directly determining the degree to which the person is willing to use the system.
2 code implementations • 5 Feb 2020 • Luciana Ferrer, Mitchell McLaren
In a recent work, we presented a discriminative backend for speaker verification that achieved good out-of-the-box calibration performance on most tested conditions containing varying levels of mismatch to the training conditions.
no code implementations • 26 Nov 2019 • Luciana Ferrer, Mitchell McLaren
However, unlike the standard backends, all parameters of the model are jointly trained to optimize the binary cross-entropy for the speaker verification task.
no code implementations • 28 Mar 2018 • Luciana Ferrer, Mitchell McLaren
The approach does not change the basic form of PLDA but rather modifies the training procedure to consider the dependency across samples of the latent variable that models within-class variability.
no code implementations • 9 Mar 2018 • Luciana Ferrer
The original work considered a single nuisance condition, deriving the EM and scoring formulas for this scenario.
no code implementations • 7 Apr 2017 • Luciana Ferrer
In this work, we propose a generalization of this model where the within-speaker variability is not necessarily assumed independent across samples but dependent on another discrete variable.